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I. PROJECT SUMMARY

This report presents results from cable dynamic studies that were performed in support
of the design of acoustic arrays for the High Gain Program. The studies were confined to two
specific areas: 1) The dynamic response of cables under low tension, and 2) The prediction
of vortex-induced vibrations of long cables in a shear current.

The research was carried out both at Woods Hole Oceanographic Institution (WHOI)
and Massachusetts Institute of Technology (MIT). The work on low tension cables was per-
formed by Professor Michael Triantafyllou (MIT) and Dr. Christopher Howell (WHOI and
MIT). The work on vortex induced vibrations was by performed by Dr. Mark Grosenbaugh
(WHOI), Professor Triantafyllou, and Dr. Ram Gopalkrishnan (WHOI and MIT).

1.1 Low Tension Cables

Dynamics of low-tension cables are important for understanding the response of arrays
that lay-over in a current at 45 degrees. Such an array that behaves like “blades of grass”
in a current was put forth hypothetically to address the problem of increasing horizontal
resolution. However, at the time the idea was put forth, there existed no comprehensive
way of analyzing the dynamics of such a system because of the array cables would be under
low tension.

There are many applications, besides the low-tension High Gain arrays, where it is
desirable to have cables under very low tension. Some other examples are drifting buoys
with hanging instrument arrays, tethers of remotely operated underwater vehicles, and
towed acoustic arrays during sharp maneuvers. All of these cases require special analytical
techniques because of numerical singularities that arise when the tension is nearly zero.

The work described in §2-6 develops the special numerical techniques for analyzing
the dynamics of systems that use low-tension cables (Howell, 1992). The analysis begins
with the derivation of the fully nonlinear three-dimensional cable equations that include the
effects of bending and torsion. The terms that model the bending stiffness and torsional
stiffness are key to removing the singularities due to zero tension.

Two novel schemes are presented in §3 for numerically solving the cable equations.
These schemes are developed with low-tension applications in mind.

In §4, we consider the problem of a cable under zero initial tension subject to an
impulsive load to gain a better understanding of fundamental mechanisms of cable response
intrinsic to low-tension behavior. Equations of cable motion under impulsive loading are
derived and solutions are presented for a variety of initial configurations.

The transition between high-tension and low-tension regimes is studied in §5 by con-
sidering the dynamics of an inextensible chain hanging freely under its own weight and
driven harmonically at the top. The high-tension regime is near the top boundary and the
low-tension regime is near the free end.

Finally in §6, the effects of elasticity are incorporated into the cable equations, and
the transition between inextensible and extensible behavior is analyzed. This last area of
research is important for analyzing the behavior of synthetic cables which can undergo large
amounts of extension without breaking. Proper modeling of extensibility is important from
the standpoint of impulsive or “snap” loading. For low tensions, a cable behaves as if it is
inextensible. However as the dynamic tension grows, there is a transition at which the cable
begins to elongate. How this transition affects the overall dynamics must be captured in the




model in order to predict the proper dynamic response. This is especially true for synthetic
cables which go quickly from being inextensible to a condition of extreme elongation. It is
this lack of clear understanding of extensibility that forces the Navy to require a very large
safety factor in the use of synthetic rope.

1.2 Vortex Induced Vibrations

The work presented in §7-9 on vortex induced vibrations gives techniques for deter-
mining drag coefficients and vibration amplitudes of long marine cables in shear currents.
These methods provide a powerful tool which engineers can use to calculate the vibrational
loads and fatigue life for specific configurations of High Gain arrays.

The extremely large aspect ratio and flexible nature of long marine cables make them
particularly susceptible to vortex-induced vibrations. From both design and operational
points of view, it is important to be able to predict the forces (primarily the drag) acting
on the cable, as well as its resultant configuration and motions. Although a value of 1.2 is
widely accepted as the mean drag coefficient Cp,, for the case of flow normal to a stationary
circular cylinder, it is also well known that any motion of the cylinder can significantly alter
the flow pattern and amplify the vortex-induced forces. In the case of marine cables, this
means that the selection of the proper drag coefficient remains a contentious issue. Even
with the fuzzy fairing, there is vortex induced vibrations and amplification of the drag
coefficient.

Analysis of vortex-induced vibrations of marine cables is an area of research that lacks
predictive tools. Past analyses of vortex induced vibrations have depended on stochastic
models to describe the strumming process (Vandiver, 1988). These methods are able to fit
full-scale experimental data by choosing the correct values of random-model parameters.
However, we must emphasize that, without full-scale experiments, it is very difficult with
this method to choose the correct values for the parameters.

Our techniques are deterministic. We explain vortex-induced vibrations by considering
an infinitely long cable which has no natural modes - so that each point on the cable responds
at the local vortex shedding frequency (Triantafyllou & Grosenbaugh, 1994). The cable acts
as a wave guide and combines nearby responses into the overall amplitude signal. Laboratory
measurements act as the input into the model and provide the sectional lift coefficients as a
function of amplitude, frequency, and modulation frequency (Gopalkrishnan, Grosenbaugh,
& Triantafyllou, 1991).

In §7, we develop a unified model for hydrodynamic excitation and damping in vortex
induced vibrations. In §8, the unified model for the fluid forces is then incorporated into
our deterministic model for predicting vortex induced vibrations of marine cables in a shear
current. The SAIC array cable with fuzzy fairing is analyzed in §9. We present laboratory
measurements of a 0.6-meter section of the cable and show how those can be used, with our
deterministic model, to predict the vibration amplitude and drag coefficient.

1.3 Final Comment

The work on low tension cables and vortex induced vibrations, begun in the High-Gain
program, continues at WHOI and MIT. The main thrusts are to look at the interaction be-
tween transverse and elastic modes in synthetic cables. Here, the principle tool for analysis
is our numerical model for three-dimensional cable dynamics that includes the effects of




bending, torsion, and extensibility. In the area of vortex-induced vibrations, we are com-
bining our hydrodynamic damping model, described in §9, with the cable model. This will
produce a powerful simulation for modeling vortex induced vibrations of synthetic cables.




II. THREE-DIMENSIONAL LOW-TENSION CABLE EQUATIONS

2.1 Introduction

In this section, the dynamic equations which form the basis of the mathematical model
of the cable are derived. The three-dimensional cable equations of motion were derived in
cartesian coordinates by Routh (1955) in 1860. Derivations of these equations in so-called
natural or lagrangian coordinates, fixed on the cable, have also been done by many authors,
including Bliek (1984). The equations derived here extend from those presented by other
authors who address cable dynamics in that forces in bending are retained. As a result,
the equations presented herein constitute a more accurate model for problems in which the
cable tension is small, and therefore are applicable for a wider range of tension magnitudes
than previous derivations. It should be noted that Love (1927), and then Landau and
Lifshitz (1959), formulated, in cartesian coordinates, fundamentally similar equations by
considering the dynamics of thin rods.

Several coordinate systems can be used to study cable dynamics. A lagrangian coor-
dinate system has two primary advantages over a fixed cartesian reference frame. First, it
is more straight-forward to describe the hydrodynamic forces in body-fixed coordinates and
secondly, results are more easily interpreted. Therefore, we adopt a lagrangian approach
herein and, as such, the coordinate system is moving in space and time.

2.2 Kinematics in 3-D

We consider the cable as a single curvilinear line. Let s denote the unstretched la-
grangian coordinate along the cable, measured from the origin of the coordinate system to
a material point on the cable. The origin is chosen to coincide with a boundary, such as
the free end of a towed array, and is denoted as s = 0. The other endpoint is denoted as
s = L, where L is the unstretched cable length.

The cable is considered to be extensible and as such we define p(t, s) as the stretched
distance to the same material point s, at a time ¢. The change in length due to elasticity is
given by the strain e. We define the longitudinal strain as

. o6p—6s dp

€= SEEO és ds

where §s is the unstretched length of an incremental segment and 8p is the stretched length.
The cable cross-sectional area is also altered due to elongation. Following Goodman and
Breslin (1976) we make the assumption that the cable has Poisson’s ratio %—, i.e. the volume
of the cable is preserved after stretching (Timoshenko,1934). This value is correct for
synthetic materials. Metallic cables have a Poisson ratio closer to %, so this constitutes an
approximation. Also, many wire and synthetic cables have a far more complex structure,
and there response involves relative motion between filaments as well as extension. Therefore
the chosen value is meant in an average, equivalent sense. As such, if we assume that the
cable is of circular cross-section we can express the change in the cable diameter d due to
stretching as

[

d=dy(1+e) (2.1)




Figure 2.1: Coordinate systems and Euler rotation sequence.

Note that here we have used the subscript s to denote a parameter in a stretched condition.

The coordinate system is resolved into the tangent, normal, and binormal directions,
given by the unit vectors ¢, #, and b, respectively. The tangential direction is defined as
tangent to the cable axis, pointing in the direction of increasing s. The normal direction
is perpendicular to £ and the binormal direction is defined such that the system of vectors
(£,%,b) is orthogonal and right-handed.

The transformation between the lagrangian coordinates z, y, and z and the fixed
coordinates X, Y, and Z is accomplished through a set of rotations known as Euler angles.
The particular choice of Euler angles is arbitrary in the sense that any rotation sequence
that provides a unique one-to-one transformation between points in the fixed and moving
coordinate systems is valid. For the sake of generality, when possible equations will be
expressed in a form which is independent of the Euler rotations chosen.

The following rotation sequence has been chosen for this analysis. First, a rotation
about the Z axis by the angle ¢ is performed. Next, a rotation about the resulting ¥’ axis
by the angle # is made to bring the X’ axis in line with the tangent direction. Finally, a
rotation about the Z’ axis by the angle % is conducted to fix the orientation of the normal
and binormal directions. This rotation sequence is shown in figure 2.1.

These rotations can be expressed in matrix form as follows:

z X
y|=T|Y
z Z
where
5




cos ¢ cosfd sin ¢ cos @ —sinf
I'=| cos¢sinfsiny — sin ¢ cos sin @sin fsin 4 + cospcosy cosfsiny
cos¢sinfcosy +sinpsiny sinpsinfcosy — cosdsiny cosf cos P

It should be noted that it is possible to more formally define the normal direction
using the so-called principal directions (Hildebrand, 1976), as done by Bliek (1984). The
formulation presented here was selected because it is more general when material torsion is
involved, and provides greater flexibility in deriving and expressing forces in bending. How-
ever, because Frenet’s formulas are not applicable to this coordinate system, an additional
constraint must be imposed to formally define the orientation of the normal and binormal

directions. This constraint will be addressed in the discussion of torsional effects.
Expressions for the time and spatial derivatives are complicated to some degree by
the selection of a lagrangian coordinate system. This is due to the fact that in addition
to the evolution of the vector quantity of interest, the coordinate system itself also varies
in time and space. This can be shown for the arbitrary vector é(t, s). Herein we employ
[ the subscript notation (1,2, 3) to denote the variables in the (£, 7, 5) directions, respectively

and express G as follows:

G= G1t + Gofr + Ggg. ‘ (2.2)

First consider the time variation of G. Expanding the expression for the time derivative
gives
DG _aG ot an b
— e —— — — — .3
D o O T Oy TG (23)
This expression for the so-called substantial or material derivative can be expressed as
DG 4G =
——=-a——+c?5><G, (2.4)
where & is the angular velocity vector. Physically, this vector represents the time rate
change of the local coordinate system about the z, y, and z axes. The angular velocity

vector is expressed as follows:
@ = wit + woh + w3d (2.5)

where, in terms of the selected Euler angles

wp = Qﬁb— - _aj_:_ sin @
YT OB Gt
a0 d¢ .
wy = acosd{ + —gcosesmtﬁ
0¢ 00
wy = B¢ o8 G cosvp — 5 sin .
The evaluation of changes in space follows along similar lines and is given by
DG 3G s =
Ds =~ Bs +QxG (2.6)

where

Q = Q1 + Qon + Q3. (2.7)
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Figure 2.2: Incremental cable segment.

The vector represents the local curvature of the cable, at the point s, about the local
coordinate system and is expressed in component form using the Euler angles as

_ 0y 0¢
o= 5 "5l
_ 99 00 .
Qy = gcosw-i-gcosﬁsmzﬁ
0¢ a6 .
Q3 = —a-;cos9cos¢—£sm¢.

2.3 Three-Dimensional Governing Equations
2.3.1 DERIVATION OF GOVERNING EQUATIONS

We begin the derivation of the governing equations by considering a small cable seg-
ment of unstretched length ds and stretched length of dp, as shown in figure 2.2. The
velocity and internal force vectors, V and T, respectively are defined as follows:

-

12 ‘v1£ + vory + ‘Ugb ’ (2.8)

T = Tii+Ton+ Tsb.

Here T denotes the tension force while 75 and T3 represent shear forces. We define
R as the distributed forces per unit length and m as the unstretched mass per unit length.
Conservation of mass dictates that

mydp = mds. (2.9)

7




Applying Newton’s law to the cable segment, along with the conservation of mass
yields

11)3‘; - 22 S R(1+e). (2.10)

We expand the material derivatives in local coordinates to yield

ov S 0T o ,
m(gy +IxV)=—=+QxT+} Rl+e). (2.11)

As mentioned, we seek to incorporate internal forces due to bending and torsional
stiffness in the cable. As such we must bala.nce the moments imposed on the incremental
cable segment in figure 2.2. Here we define M and ) as the internal and distributed moment
vectors. We define the following unstretched quantities: Young’s modulus E; shear modulus
G; cable density p; sectional second moment I; and polar moment I,.

The unstretched internal moment vector is expressed as

M = Myt + Mah + Msb (2.12)

where, assuming the cable is a circular, homogeneous cylinder,

My = GL® " (2.13)
My = FIQq
M; = FEIQs.

It should be noted that in (2.13) Q; represents the material torsion which, in general, is
different than the geometric torsion. In addition, the mass moment of inertia per unit length
matrix pcI, for a homogeneous cylinder of circular cross-section, is defined as

I, 00
pI=10 I 0
0 0 I
Using equation 2.1, the following relations are found between stretched and unstretched
quantities:

-

M = M,(1+e)?
pl = pIs(1+ 3)2'
Taking moments about the left-hand side of the cable segment and expressing the

results in terms of unstretched quantities yields:

[—4-’[__] +Q(1+e)+dr x B(1+e)+ 3—2 x T. (2.14)

D[pcIu'i] D

Dt [l+e)l Ds|(T+e2

In the limit that dr — 0 we find the following:

dirxR — 0

1 dr g

(1+e)ds )
8




It is unlikely that distributed moment forces will arise in the types of problems ad-
dressed in this study. As such, this term will not be retained. Applying these simplifications
to equation 2.14 provides the set of moment balance equations given below.

D [ plo ] D[ M
Dt (1+e) Ds |(1+e)2
The applied forces acting on the cable are located on the right-hand side of equation

2.10. These forces include the internal forces due to tension and shear, as well as external
loads. The external loads will be considered in detail in §2.4.

] +ix T(1+e) (2.15)

2.3.2 SIMPLIFICATION OF GOVERNING EQUATIONS

Before expressing the governing equations in final form, we attempt to simplify the
equations by identifying terms which can be neglected. This will be accomplished by con-
ducting a nondimensional analysis of equations 2.10 and 2.15. Nondimensional terms will
be denoted subscript n.

We begin by defining the following nondimensional quantities:

th =

€1

)

Il
Ditvle & o+
g~F " =5

=
Substitution of these nondimensional quantities into equation 2.10 yields

oDVa _ 1 DT
Dt, mgL Ds,

1 —

Based on this we define the nondimensional force vectors f’n and }-i,, as

. T
I = mglL
-. R
B, = —

mg

Introducing the previously defined nondimensional quantities into equatlon 2.15 and
neglecting the strain terms associated with the inertial forces yields:

(14 )29 D3 BT (Dﬁ 2 B

£ x TomgL(1 + e)® 2.17
L Dt, ~ IZ \ Ds, (1+e)as,,)+ X mg(+e) 217)

Here we have assumed that GI, is on the order of EI. Rearranging terms, we write the
nondimensional equations in bending.




A DO D& de :
tx To(1 3~ - id i 2 — .
x Th(l+e) 51 Do, + B2 Dr. (1+e) +2ﬁ183n (2.18)
where
EI
_ Pl
b = mL?’

In order to determine the relative importance of the variations in strain, we further
investigate the last term on the right-hand side. Assuming a linear stress-strain relation is

applicable, we write

T

Using this relation we find

FEI 0Oe I 0T, d%0T,

mel3 %, ~ A Ba. ST 3a (220)

The diameter to length ratio is typically very small. Therefore, based on (2.20) we will
neglect this term.

To compare the relative significance of the bending stiffness term 8; and the rotational
inertia term (2 we examine their ratio,

sy gpel
% = ng . (2.21)

For steel cables, this ratio is on the order of 10~%L meters. For synthetic cables this
ratio may be slightly larger. We should still be justified, however, to neglect the rotational
inertia terms. As such, rotational inertia terms will not be retained.

Next we consider forces in torsion. Neglecting the rotational inertia term in the mo-
ment balance equation about the tangential direction yields

00
GIp—és_ =0 (2.22)

Equation 2.22 simply states that the torsional rigidity remains constant throughout
the cable span. In the absence of applied end moments, as is typically the case for torque
balanced cables, therefore, the effect of torsion is zero. If end moments are present, i.e. a
torque unbalanced cable is considered, the material torsion 2; is constant along the cable
span and, therefore, a constant torque is applied over the entire cable length.

Equation 2.22 can be satisfied in one of two ways. First, torsion effects can be neglected
either on the basis that §; < 1 or because end moments in torsion are not present. The
second approach is to calculate ; from the boundary conditions, and then impose ; =
C(t) along the span, where C(%) is a time varying constant.

Herein we adopt the first approach and assume that the torsional stiffness is negligible.
As a result, a new equation must be chosen to replace equation 2.22. The purpose of the
new equation is to fix the orientation of the local coordinate system about the tangential
direction. This is an arbitrary selection because the governing equations apply regardless
of the orientation of the normal and binormal directions.

10




For simplicity we specify the orientation of the local coordinate system by setting
¥ = 0. This simplifies the analysis by removing one variable from the equations.

With this simplification the angular velocity and rotation vectors reduce to the fol-
lowing:

w = ——a—t(é sin 4
06

w2=§'
9¢

wy3 = -—cosf

ot

and

Q = -——fsinO

Os
06
Os
9¢
Q3 = B cosf.

Proceeding further, we examine the significance of the shear forces T and T3. Using
the simplifications discussed earlier, we find the following nondimensional relations for the
shear forces:

aQ3n
Ton = f1(Qafon — 9, )
_ Q9

T3n = -ﬁl(anQ3n+ asn )

Therefore, the shear forces are of order O(;). This is an important result that provides
information as to when shear forces are negligible. In particular, we find that shear stresses
are inversely proportional to L3, provided the radius of curvature is of order O(L). For
moderate to large tension magnitudes, tensile forces prevent the cable from developing
substantial variations in curvature. Therefore, if the cable tension T}, is of order O(1) and
the cable is very long, it is valid to neglect bending stiffness. However, if the tension is
small, the cable can develop substantial curvature and shear forces must be retained.

An alternative means for investigating the significance of bending forces is to consider
the induced strains. For simplicity we consider a two-dimensional configuration. Let er de-
note the strain induced by tension, i.e. T} = FAer, and e, the strain induced by curvature.
For a radius of curvature @, the maximum strain due to curvature is given by e, = r/a,
where 7 is the radius of the cable cross-section. If we consider the case where ey, is of the
order of er, then the binormal bending moment, M;, is given by My = EI/a ~ T I/(Ar).
For cables of circular cross-section, I = (7r)/4. Therefore, we find

M~ Ar (2.23)
4
Neglecting rotational inertia effects, the binormal shear force S, is obtained as
dM, Tir
- ~ 2.24
Sb ds 4l. ( )

11




Figure 2.3: Superposition of forces to account for end effects.

where [ is the characteristic length of change of the bending moment. Therefore, only if
I is of order r, a situation which is not physically realistic, will the shear forces be of the
same order of magnitude as that of 71, in this case.

As a result, we can conclude that forces in bending are significant only if the strains
they induce are greater than those induced by tension, a situation which can occur in ap-
plications involving low tension.

2.4 Applied Forces

The external forces acting on the cable include the cable weight, buoyancy, and the
hydrodynamic forces of drag and added mass. Each of these forces will be addressed sepa-
rately. Note that all forces discussed here are per unit stretched length.

2.4.1 CABLE WEIGHT AND BUOYANCY FORCES

Despite the seeming simplicity of static weight and buoyancy forces, a large number
of papers have been written on the proper way to express these forces mathematically
(Sparks, 1984). To understand why this has occurred we must first return to basic principles.
Archimede’s principle states that the net buoyancy force on a body completely enclosed in
a fluid is equal to the weight of the fluid displaced by the body. The cable segment shown
in figure 2.2 is attached to adjoining cable on both ends and is therefore not completely
enclosed in fluid. :

To account for this condition at the end points, we superimpose forces as shown in
figure 2.3. Because segment A is completely enclosed, we can write the buoyancy force Fp

as

Fg =gpyA, (2'25)

12




where g is the gravitational constant. According to equation 2.1, this expression can be
rewritten as )
Fp(l+e) = gpuA. (2.26)

Subtracting the buoyancy force from the cable self weight we find an expression for w, the
submerged cable weight/unit length, given as

wo = (m = py,A)g. (2.27)

This force acts in the direction of the gravity vector (—z) and as such we write the final
expression for the forces due to the submerged cable weight

Ry(14€) = —w,i = wo(n1t + noft + nab) (2.28)

where, in terms of the selected Euler angles

ny = —cos¢dcosh
ng = sing
n3 = —cos¢sinf.

Now we must consider the end point forces in segment B. These forces act in the axial
direction only and therefore can be lumped together with the internal tension. Following
Goodman and Breslin (1976), we define the “effective tension”, in terms the internal tension
and the hydrostatic pressure P, as

P4

Tie =T + ———.
1 1+(1+e)

(2.29)
In this manner, the form of the governing equations remains unchanged in water or air.
Henceforth, to simplify the expressions, T} is defined as the effective tension and the sub-
script e will be dropped.

2.4.2 HYDRODYNAMIC FORCES

Determining mathematical expressions that accurately model the fluid-structure in-
teraction forces acting on the cable is extremely complex, especially if the effects of vortex
shedding are incorporated. Therefore, it is not surprising that a large portion of hydrody-
namic research is focussed in this area.

In addition to the hydrodynamic forces that arise from the cable motion itself, we seek
to incorporate fluid loads due to current. To this end we define J; as the current velocity in
the j** direction. Transformation between known current magnitudes in a fixed coordinate
system to local coordinates is accomplished through the transformation matrix T. _

Herein we adopt the semi-empirical Morison type approach for modeling hydrodynamic
loads (Sarpkaya and Isaacson, 1981). In this manner the fluid loads are decomposed into
one component in phase with the fluid velocity (drag) and one component in phase with
the fluid acceleration (added mass).

To calculate the hydrodynamic drag force, the fluid velocity field is first decomposed
into tangent, normal, and binormal components. Denoting the relative velocities with a
subscript r, we can write




vir = v —J1
ver = v2—Jp
v = v3—J3

Using Morison’s approximation and denoting Cy as the drag coefficient in the jth
direction, the drag forces are expressed as follows:

Ry(1+ €) = Ryt + Ryp + Ryzh (2.30)
where
Ry = —%pwdwcﬂvhwh](ue)é (2.31)
Rio = —zpudConvnlud, + [} (1+ 0} (2.32)
Ris = ~3pudCanylvd + 3 [H(1+ o). (2.33)

Needless to say, accurate values for the drag coefficients are required for accurate so-
lutions. This is not a simple matter with complications arising, for example, from changes
in surface roughness and the onset of vortex shedding. As a result, determining drag coef-
ficients has been and continues to be an active area of research. For additional information
on drag coeflicients consult (Sarpkaya and Isaacson, 1981).

Hydrodynamic forces in phase with the fluid acceleration are often called the added
mass forces. Added mass forces are one of the most frequently misunderstood concepts
in hydrodynamics, especially for investigators who study cable problems. In basic terms,
when a body immersed in a fluid is accelerated, the surrounding fluid must be displaced and
therefore is also accelerated to some degree. The additional inertia force required to displace
the fluid is known as the added mass force (Newman, 1977). According to this definition,
the added mass force can only act in a direction normal to the cable and is independent of
viscosity. Lighthill (1960) has shown that strip theory is an acceptable means of calculating
added mass forces for cables.

We express the added mass force in terms of the relative accelerations of the fluid,
normal to the cable, and an added mass coefficient m,.

5 _ Ovor vz »
R,(1+e)=—-mq el ma—ét-——b (2.34)

As with the drag coefficients, the evaluation of m, is difficult. Generally, for cable
problems, the following expression is used

T
mg = prdz (2.35)
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Figure 2.4: Description of location vector 7(%, p).

2.5 Compatibility Relations

The governing equations as derived are valid for an incremental cable segment. As
such, compatibility relations which relate the cable velocities, orientation, and strain are
required to ensure compaitibility between adjoining cable segments. In the absence of strain,
a simple physical interpretation of these relations is that they preserve the cable length.

We define 7(t,p) as the vector from the origin of a fixed coordinate system to a point
on the cable, as shown in figure 2.4. In deriving the compatibility relations we assume that
the cable shape is sufficiently smooth. For this to be valid, (¢, p) and its derivatives must
be continuous functions of p (or s) and ¢. This assumption was implicitly assumed in the
derivation of the governing equations as well. This is an important requirement which may
not hold for the particular case of a chain under zero tension. When tension is lost in the
chain, a restoring force which.prevents the chain from forming discontinuous slope does not
exist because chains, unlike cables have no bending stiffness. This topic is addressed further
in §5.
In the absence of discontinuities in the cable shape, we can use the property of con-
tinuous functions of two variables (Hildebrand, 1976) and write

D [ﬂ ._-_D_[QC , (2.36)
Di | Ds) ~ Ds | Dt

According to the definitions of the tangent and velocity vectors (Hildebrand, 1976)

- _ DFf
= = 2.37
V.= o (2.37)
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Substitution of 2.37 into 2.36 provides the compatibility relations in vector form

D DV
S+ e)f] = B (2.38)
This can be expanded to give
%i—f+(l+e)d5xf=%%+ﬁx17. (2.39)

2.6 Final Equations

In order to clarify the expressions used in subsequent sections, we eliminate the sub-
script notation used previously. Here we redefine the velocities (v1,v9,v3) as (u,v,w) and
the internal forces (T1,T3,T3) as (T, Sn,Sp), where T denotes the effective tension and S,
and Sj are the normal and binormal shear forces, respectively. In addition we assume a
linear stress-strain relation is applicable and write

T
e= —E'Tli (2.40)
where T denotes the effective tension, as defined in (2.29).

In terms of the new variables and the expression for the strain, we can express the

equations of motions in their final form.

m(Zt—u -+ w% - 'v%? cosf) = % + S5pQ2 = SpQ3 +wony + Ry (2.41)
m %1;- + Bat—¢(u cos § + wsinb)) + m, a;ir = 8;"9,, + Q3(T + Sptan f) + wong + Ras
m(%—%’—-—v%sin@—u%ﬁ-)%—ma%& = %—Snﬂgtang—T92+won3+Rd3
EI%%Z = EIQ%tan0+Sb(1+£Z)3
EI%— = EIQQ3tan — S,(1+ %)3
Z—Z+ng—ﬂgv = E’LA%%
%+Qg(u+wtan9) = (1'*'73_1;4')%0089
83—1;]—93Uta.n9—92u_ e —(1+E'TZ)%§
Q3 = -g—f-cos()
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2.7 Discussion of Equations of Motion

Of fundamental significance to the study of low tension cables is that the cable gov-
erning equations are singular for zero tension if forces in bending are neglected. Dowling
(1988) has shown using analytic techniques that when the cable tension is balanced by a
fluid loading term, a critical point develops. She found that in order to obtain solutions
beyond the critical point, bending stiffness must be incorporated in the boundary layer
region near this singularity. In addition, Dowling found that solutions beyond the critical
point are influenced by bending stiffness.

The singularity identified by Dowling is associated with cable equations that neglect
bending stiffness. The more general formulation, given by (2.41), is stable for zero tension.

A physical interpretation of the zero tension singularity is most readily understood by
considering the mechanisms by which energy is propagated along the cable. For a perfectly
flexible cable, transverse disturbances are propagated at a speed proportional to the /T,
where T' is the instantaneous cable tension (Bliek, 1984). As such, the speed of energy
propagation slows considerably in regions of low tension, and energy cannot be transmitted
past a critical point of zero tension. As such, energy builds rapidly near the critical point,
and the equations become singular. If the point of zero tension coincides with a boundary,
i.e. the free end of a hanging chain, energy can be transferred by reflection. For this reason,
a zero tension point is permissible at a boundary, provided the boundary is free to reflect
energy. Triantafyllou and Triantafyllou (1991) have shown that if the free end of a hanging
chain is constrained, the governing equations for a perfectly flexible chain are unsolvable.

An alternative energy mechanism which gains importance as the tension approaches
zero is bending stiffness. In this later case, energy is transferred by flexural waves at a speed
proportional to vEI. In reality, cables do exhibit a finite degree of flexural rigidity, which
can serve as the necessary physical mechanism for energy transfer. By contrast chains have -
no flexural stiffness. They are, however, able to transfer energy by developing rotational
inertia in the individual links.




III. NUMERICAL METHODS FOR SOLVING CABLE EQUATIONS

3.1 Introduction

The cable governing equations derived in §2 are nonlinear and strongly coupled. As a
result, analytic solutions are unavailable except in simplified cases. Some analytic results
are obtainable using asymptotic techniques, as discussed in §5, however, in order to obtain
solutions for more general problems, numerical methods must be employed and a number
of algorithms have been developed for this purpose.

In this section, we first discuss the previously developed numerical techniques in the
area of cable dynamics. In particular we address the limitations of these techniques as they
apply to the study of low-tension problems. Also addressed in this section are two recently
developed algorithms which were designed to overcome the drawbacks of existing methods.
These two algorithms were used extensively to obtain the numerical results discussed in the
subsequent sections.

3.2 Previous Numerical Techniques

Several papers have been published which survey existing analytic and numerical tech-
niques used to study cable dynamics. Casarella and Parsons (1970), and then Choo and
Casarella (1973), provide comprehensive summaries of the developed methods. However,
these papers were written in the early 1970’s and recent developments have left these pa-
pers somewhat out-dated. Triantafyllou (1991) has recently published a review paper which
summarizes many of the advancements that have occurred over the last twenty years.

As mentioned in the introduction, solving the cable governing equations is extremely
difficult. These difficulties are principally due to geometric and hydrodynamic nonlineari-
ties. In addition, material nonlinearities may also be present if a linear stress-strain model
is not applicable.

To eliminate the nonlinearities, many methods linearize the problem by assuming small
deformations from some static configuration. This greatly simplifies the analysis. However,
for low-tension problems, large displacements can develop due to the small restoring force,
thereby rendering any static configuration meaningless. Also, because the dynamic tension
may be equal or greater than the static tension, low-tension problems cannot be simplified
by linearizing the tension.

Other assumptions typically made include neglecting inertial forces, bending stiffness,
and elasticity. The validity of these assumptions is dependent on the particular analysis in
question and the methods therefore are often restricted to a limited class of problems.

In recent years a wide range of numerical techniques have been applied to the study
of cable dynamics. The most prevalent methods of approach are finite-difference, finite-
element, spectral-method and lumped-parameter models. For separate discussions of these
methods see Ablow and Schechter (1983), Delmer et al. (1983), Webster (1975), Burgess
(1985), and Kamman and Huston (1985). A detailed comparison between finite element and
lumped parameter methods has been published by Leonard and Nath (1981). The method
of characteristics has also been used successfully. In particular, Schram and Reyle (1968)
used the method to show coupling occurs between transverse and longitudinal disturbances
if the shape of the cable is not straight.




A finite-difference approach is most suitable for the low-tension problem. Lumped-
parameter and finite-element models require an excessive amount of computer storagé and
often obscure the underlying physics of the problem. Other authors have determined that
finite-element models are not well suited for inherently nonlinear problems, involving large
displacements Delmer et al. (1988). Spectral-methods suffer from the limitation that deriva-
tive boundary conditions, such as those encountered when incorporating bending stiffness,
are often difficult to evaluate.

The finite difference method has been used extensively in the past to model cable prob-
*lems. Sanders (1982) developed a three-dimensional algorithm in which finite-differences
are used to discretize the cable and simulations are advanced in time using a Runga-Kutta
recurrence scheme (Press et al., 1988). This algorithm suffers from the limitation that in-
ertial forces are neglected. This assumption is not valid for low-tension problems in that
inertial forces can be on the same order of magnitude as tensile forces.

Ablow and Schechter (1983) developed a three-dimensional algorithm which includes
inertial forces and discretizes the problem in both space and time using finite-differences.
The method uses a second-order accurate implicit approximation scheme, commonly known
as the box-method (Mitchell and Griffiths, 1980), which is centered in space and time. Mili-
nazzo, Wilkie, and Latchman (1987) improved on the methodology of Ablow and Schechter
by developing a better method for treating the zero tension boundary condition at the free
end. Burgess (1991) corrected earlier mistakes in these publications by properly accounting
for the hydrostatic and added mass forces. In addition, he has incorporated the ability
to pay cable out from a ship, as required for cable deployment simulations. However, as
with the previous authors, he incorrectly applied the principle of conservation of mass and
derived erroneous strain terms in his equations.

An important point to note about these previous formulations is that the algorithms.
all become unstable if the tension approaches zero anywhere along the interior of the cable,
a situation which is likely to occur in low-tension studies. This is a significant drawback of
the methods and prevents altogether the study of cables under zero initial tension.

Ablow and Schechter (1983) determined that if the tension vanishes anywhere along
the cable, the determinant of their stiffness matrix becomes zero. Because this matrix
is inverted within their numerical approximation scheme, the method fails. As noted by
Dowling (1988), the singularity encountered by Ablow and Schechter is not an artifact of
their numerical scheme; instead it stems from the ommission of flexural stiffness in the
dynamic equations. The previously noted finite difference schemes all neglect the effects
of bending stiffness and therefore are limited in their application to low-tension problems
based on both numerical and physical considerations.

An sidenote to Dowling’s work is that her solution is based on the correct form of the
linearized transverse momentum equation, first derived by Paidoussis (1973). In two earlier
papers by Paidoussis (1966, 1968) a term was incorrectly omitted in this equation, leading
Ortloff and Ives (1968), Kennedy (1980), and Kennedy and Strahan (1981) to publish
erroneous solutions of the towed array problem.

The limitations of existing algorithms created a need for novel approaches to the low-
tension problem. Two alternative numerical methods were developed for this purpose. The
first method was primarily developed to treat problems under zero tension initially, such as
impulsively loaded cables as discussed in §4. Prior to excitation of the cable, zero tension
is permissible, therefore, the failure of previous algorithms in this case stems from the
numerical formulation. Within the method, an explicit time integration scheme is used in
which the cable tensions are cast as the only unknowns in a matrix problem. Therefore,
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the onset of zero tension along the cable does not present a problem computationally. This
allows a wider class of initial value problems to be studied. ’

The second method developed incorporates the effects of bending stiffness in an im-
plicit finite difference formulation, similar to that of Ablow and Schechter. An implicit
scheme was selected because the characteristics of the governing equations are altered by
including bending stiffness (Watzky, 1992). In §3.4 we show that incorporating bending
stiffness eliminates the zero tension singularity. This finding has been shown previously for
the two-dimensional case by Howell (1992).

3.3 Explicit Formulation Without Bending Stiffness

Explicit time-domain integration schemes are generally used in conjunction with finite-
element and lumped-parameter methods (Chiou, 1989). However, existing finite-difference
algorithms use implicit time integrators. The reason is that implicit schemes can be uncon-
ditionally stable while explicit schemes are conditionally stable (Leonard and Nath, 1981).
In addition, explicit schemes are not well suited for predominantly parabolic equations
(Mitchell and Griffiths, 1980). This led Sanders (1982) to question the applicability of ex-
plicit schemes in general. However, it is possible to formulate the difference equations so as
to retain the hyperbolic characteristics of the governing equations. In-addition, by chosing
the inextensible form of the cable equations, we can eliminate longitudinal waves. This
reduces the stiffness of the equations because longitudinal wave speeds are generally much
higher than those for transverse waves. Therefore, an explicit solution scheme is feasible,
provided it remains stable. Such a scheme could offer significant advantages over implicit
schemes because no iterations are required.

3.3.1 EQUATIONS OF MOTION

We restrict our attention to two-dimensional problems only. The two-dimensional
inextensible form of the governing equations and compatibility relations is given by

ou ¢ _oT 1
m 5 Ev = 55" W, COS @ 2,0wD7FCdtur|url (3.1)
o 8 . . 1
m(% + 5?“) + ma%vt— = T%’s2 +Wosing — 2 pw DCoanvy vy

-‘-92 - -aj-s-v = 0

ds ds

ov 98¢ _ 09¢

g -+ a—su = 8t .

These equations describe the mathematical formulation of the problem and form the
basis of the numerical approximation scheme. With regard to boundary conditions, we con-
sider the cable to be pinned at one end (s = L), with the tangential and normal velocities
prescribed. The other end (s = 0) is considered to be a free boundary and zero tension
is imposed at this end. The fourth boundary condition, zero moment at the free end, is
automatically satisfied by neglecting bending stiffness.




12 T

Y-AXIS

Figure 3.1: Example of growth of instability in an undamped explicit formulation at times
t=0.0, 2.5, and 3.0 seconds.

3.3.2 FINITE-DIFFERENCE APPROXIMATION

The basic premise of the explicit formulation is to write all spatial derivatives in terms
of the previous time step and to then solve for the new time values directly. The formulation
begins by first discretizing the cable into n nodes. The governing equations are then applied
directly at each node. First-order and second-order approximations are used for the time
and spatial derivatives, respectively. Second-order forward and backward differences are
used for spatial derivatives at nodes 1 and n, respectively.

As with any numerical scheme, stability is a major concern. It has been determined
that in the formulation described above some degree of numerical viscosity is required for
stability. This finding is demonstrated in figure 3.1. The problem studied was a hanging
chain in air, subject to a sinusoidal displacement at the top. The cable was initially in
a Bessel function shape, as given by the third natural mode of the linear system. The
instability encountered was due to undamped high frequency parasitic waves generated at
the lower boundary. It can be shown that these waves grow exponentially in time (Mitchell
and Griffiths, 1980). The goal is to construct a numerical scheme which is accurate for the
long wavelengths (which are the main interest) while at the same time dissipates the energy
at the short wavelengths (which tend to corrupt the solution). Such a method is no less
accurate than a nondissipative model, as the latter is already inaccurate for high-spatial
wave numbers. For this reason an artificial dissipative term is added to each approximation
of the time derivatives and the degree of dissipation is controlled by the leading coefficient
a, where o < 1. Mathematically, the procedure is represented by the approximation below.
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This procedure is similar to the Lax-Fredrichs and Lax-Wendroff (Mitchell and Grif-
fiths, 1980) formulations of the first-order wave equation. Within these two methods, the
leading coefficient o is dependent upon the spatial and time stepping increments, As and
At, respectively, and is given by the following:

As? .
a= 3A% Laz — Fredrichs
o= %—t Laz — Wendrof f.

Within the present explicit scheme, the a coefficient is independent of the stepping
factors and can be varied along the cable and between the independent variables (4, u, v).
This allows the user greater flexibility during the investigation. The basic idea is to choose
o of sufficient magnitude to provide stability while being small enough to have a negligible
effect on accuracy.

Combining the approximations described above yields the following system of equa-
tions: )

Node 1 (forward-differences)

. ¢’+1 =@ - A Plof = 4vd + 3ui + ul (¢% — 494 + 3¢9)] (3:3)
uf = & +of (9 ~ B) + 22(-T + 47 - 3TY) -
o2t os(#h) - -A-flwawcd:urlluﬂl (3.4
vt =3 - 1;1—1"‘1(9!5'+1 - ¢1) - [ Tyt cos(41th) — T cos(44)] + ‘sin n(¢}) —
——T’ (9% — 4dh +3¢1) — ﬁ%waC'dnvrl |or ] (3.5)
Ti = 00 (3.6)

Internal Nodes (central-differences)

FH = F = Mlviys — v 1+ 0 = ) (37
) oAt ;
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Node N (backward-differences)

$utl = @y + Ml _g — 40l + Svui] +ud (B _p — 4%, + 34L) (3.11)
uitl = prescribed (3.12)
vit! = prescribed (3.13)
z+1 _ 4uz+1 + 3u1+1 — v1+1(¢1+1 ::tll + 3¢:z+1) (3.14)

Here the subscript j is used to denote the node number while the superscript ¢ denotes the
time step. The spacing ratio A, is given by A, 2 As and m; = m+m,. The overbar is used
to denote a term which has been modified to include the necessary artificial dissipation. If
additional dissipation was not required, the overbar would simply be removed. In terms of
the general variable ¢, § is given by

_. . 2\
o= g+ A—( ¢i — 205 + g3) (3.15)
G D
Q3 = QJ + -—A—(qj 1= 2QJ + q;-{-l)
i i 2\ ; i
-q-n = Qn + _——(qn 2q‘n—l + Qn—-2)'

It should be noted at this point that (3.10) and (3.14) are written as implicit state-
ments. This is a necessary modification for the solution procedure. Briefly, the algorithm
proceeds in the following manner. First the unknown angles are solved for directly using
(3.3), (3.7) and (3.11). Next, (3.4), (3.5), (3.8), (3.9), (3.12), and (3.13) are introduced into
(3.10) and (3.14). By including (3.6), a n X n matrix is formed with which to solve for
the unknown tension values. These values are then used to solve directly for the velocities.
This procedure is then repeated through the desired number of time steps. Within the
algorithm, the banded structure of the matrix is exploited. Therefore, the matrix solution
takes roughly n operations and is only performed once per time-step.

3.3.3 EXPLICIT SCHEME RESULTS
At the present time, the most widely used finite-difference solver for the cable equations

without bending stiffness is the implicit routine first developed by Ablow and Schechter
(1983). Therefore results obtained with the explicit scheme will be directly compared with

this method. The implicit method will be discussed in greater detail in §3.4.

The three main concerns associated with the development of any numerical algorithm
are accuracy, stability and computational efficiency. These topics are all closely related. On
the basis of accuracy, the implicit scheme is superior in that second-order approximations
are used for evaluating the time derivatives while the explicit scheme is only first-order in
time (use of second-order differences in the explicit scheme proved highly unstable and was
therefore abandoned). In addition, some error is introduced within the explicit scheme by
the addition of numerical viscosity. Both methods prove stable provided sufficient numerical
dissipation is added to the explicit scheme. Excessive amounts of dissipation will inhibit
accuracy, however, therefore the explicit scheme is limited to some degree in choice of
stepping parameters. With regard to efficiency, the explicit scheme appears to hold an
advantage in that no iterations are required and the matrix problem is four times smaller.
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Finite-Difference Method | # of Nodes Time-step

Explicit 80 0.002
Implicit 80 0.016

Table 3.1: Case studies for hanging chain problem

Therefore, for comparable stepping increments, the implicit scheme requires at least eight
times more operations, assuming only two iterations per time step and that solution of an
n X n banded matrix problem is on the order of n operations.

A direct comparison between the methods was obtained by studying the motions of
a hanging chain in air. For small motions, an analytic solution for the displacement ¢(t, s)
may be obtained in terms of Bessel functions, and is given by Triantafyllou and Triantafyllou
(1991).

dn (t, s) = Jo(zwn \/5) Sin(wnt)- (3.16)

The third mode was used in the analysis (w3l = 4.327) and the velocities were ini-
tialized within the algorithms according to (3.16). Several cases, involving a wide range
of stepping increments were studied and two indicative cases are listed in 3.1. For the
explicit method, the instability was generated near the top boundary, therefore additional
dissipation was incorporated near this point. The stepping increments were chosen so as to
keep the relative error in the explicit solution below 0.5 percent. The two cases are roughly
comparable in computation effort.

The results obtained are shown in figures 3.2 and 3.3. The error measure is based on
the rms difference between the analytic and numerical solutions, expressed as a percentage
of the maximum displacement. As figure 3.2 shows, it is possible to obtain comparable’
results with the explicit scheme, in some cases, provided the dissipation is added correctly.
Figure 3.3 depicts the cable shape at various times and shows the error incurred by both
methods. For reduced stepping increments, both methods converge to the analytic result.

The two methods were applied to a second problem involving a positively buoyant
cable, pinned at the bottom, subject to a sinusoidal current with a period of 1.0 seconds.
The results are shown in figure 3.4. Computational time was roughly equivalent. As readily
seen, both methods converge to the same result. Therefore, the explicit scheme provides
a means with which to compare the results of the implicit scheme. In addition, unlike the
implicit scheme, the explicit scheme does not become singular for zero intial tension. This
is due to the fact that the tensions are deliberately cast as the unknowns in the matrix
problem. The explicit scheme may therefore be used to study a wider range of initial value
problems. ’

In general, for simulations with longer time spans, the artificial dissipation term may
begin to affect the solution accuracy. Therefore, the explicit scheme is better suited for
transient problems and can be used in conjunction with an implicit scheme to step-through
computationally difficult periods. In submerged cable problems, however, the fluid drag
provides additional damping, thereby helping to stabilize the explicit scheme. For such
problems the explicit method retains its accuracy over long time spans.
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Figure 3.4: Calculated cable shape from explicit and implicit schemes for anchored cable
subjected to a sinusoidal current, at times t=0.0, 6.0, and 15.5 seconds.

3.4 Implicit Formulation with Bending Stiffness

Little research has been conducted, in the past, on the effects of bending stiffness.
This is attributable to the fact that for long taut cables, as typically studied, bending forces
are often negligible. Sanders (1982) developed two criteria for analyzing the importance of
bending stiffness. First the internal shear force must be significantly lower than the cable
tension. Secondly, for a cable of constant curvature, in which the shear force vanishes,
the tension in the fibers due to pure bending must be less than the cable tension. The
nondimensional analysis conducted in §2 also provides guidance as to when bending effects
can be neglected. For low-tension cables, large deformations can occur which give rise
to shear forces that can be of equal magnitude as the cable tension. Therefore, bending
stiffness must be included for such cases. ,

McCoy (1972) found that significant stress differences arise in the neighborhood of
concentrating loadings if bending stiffness is retained. He found the magnitude of these
differences was independent of the amount of bending stiffness, however the extent over
which these differences occur diminishes wih decreased bending stiffness.

Ketchman and Lou (1975) developed a two-dimensional finite-element model with
bending stiffness. They applied their method to towed cables and determined that the ef-
fects of bending stiffness were confined to a region near the free end of the cable, where the
tension was lowest. Their approach, however, is limited in its applications as inertial forces
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were neglected.

3.4.1 EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The three-dimensional nonlinear equations of motion, as given by (2.41), can be ex-
pressed in matrix form as follows:
oy 9y -
M—a; = N‘&- +@Q (3.17)
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Y = (T7 S'n, Sbvu’vyw: ¢99792193)T (318)
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To complete the mathematical formulation we must consider boundary conditions.
One end of the cable (s = 0) is considered as a free boundary while the other end (s = L) is
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pinned to an anchor or ship. At the free boundary, the tension, moment, and shear forces
are all zero. At the pinned end, the three velocities are prescribed and the moments are set
equal to zero. Mathematically, these boundary conditions are expressed as follows:

T(t, 0)=0 (3.19)

EIQg(t, 0)=0

EIQ3(t,0) = 0

EIaQQ(t,O) —
Os

Bl BQ;;(t, 0) _
u(t,L) = U(t)

v(t,L) = V(2)

w(t, L) = W(t)
EIQs(t,L) =0
EIQs(t, L) =0

0

0

where U(t), V(t), and W(t) are some known velocities. In this fashion, the required ten
boundary conditions are imposed and an equal number are applied at each boundary.

3.4.2 FINITE-DIFFERENCE APPROXIMATION

As with any finite difference formulation the cable is first discretized into n nodes,
separated by As, and time is divided into a series of steps of length At. The set of equations
given by (3.18) are solved at the midpoint between nodes j and j + 1, denoted by j + %,
and at the time ¢ + % The partial derivatives in (3.18) are expressed using centered finite
differences as follows:

= = 2 I 2
7t At (3.20)
¥ _ Y-y
ds As

Introducing (3.20) into (3.18) and evaluating the equations at j + % and 7 + % yields
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This provides 10(n —1) equations with which to solve for the 10n unknowns. The remaining
equations are provided by the 10 boundary conditions.




The set of difference equations given by (3.21), along with the boundary conditions,
provide a coupled set of nonlinear equations with which to solve for the new time val-
ues. A Newton-Raphson (Dahlquist and Bjorck, 1974) iteration scheme is used to solve
for the unknown variables. Several iterations per time-step may be required for conver-
gence. However, the banded structure of the resulting matrix can be exploited, reducing
the computations to roughly n operations per iteration.

Ablow and Schechter (1983) base the stability of their numerical scheme on the deter-
minant of the M matrix. This is because this matrix is inverted within their algorithm. If
bending stiffness is neglected, we find that

det M = —T? cos . (3.22)

Therefore, if the cable loses tension during the computations, or if the tension is zero
initially, their method becomes unstable. In the numerical scheme outlined here, the M is
never actually inverted, however method still fails due the zero tension singularity in the
equations of motion. The method will also become unstable if the cable becomes horizontal
in the out-of-plane direction (i.e. § = § or %) This singularity stems from an ambiguity
in the reference system and can be controlled, but not removed entirely, by selecting an
alternative Euler rotation sequence.

A markedly different result is obtained if bending stiffness is retained. The determinant
of the M matrix shown here is easily obtained by taking the product of the trace yielding

det M = (EI)%cos¥. (3.23)

Therefore, provided the bending stiffness is finite, the matrix can be inverted, regardless of
the cable tension magnitude. Howell (1992) has previously demonstrated that incorporating
bending stiffness eliminates the zero tension singularity for the two-dimensional case.

3.4.3 IMPLICIT SCHEME RESULTS

The implicit scheme has been verified within the linear regime, and the effect of bend-
ing stiffiness on the dynamics has been studied by Howell (1992). Figure 3.5 compares
two-dimensional results for a cable, subjected to a sinusoidal current of period 1.0 seconds,
with and without bending stiffness. A relatively large nondimensional bending stiffness
term of EI/mgL® = 103 was implemented for the analysis. As readily seen, the cable

_ shape is significantly altered with the curvature being greatly reduced by bending stiffness.

In particular, bending-stiffness effects were greatest over the top half of the cable. This is
due to the lower cable tension in this region and demonstrates the physical importance of
bending stiffness in regions of low tension.
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Figure 3.5: Effects of bending stiffness on anchored cable sub jected to a sinusoidal current,
at times t=0.0, 6.0 and 15.5 seconds.




IV. NONLINEAR IMPULSIVE MOTIONS

4.1 Introduction

In this section, we explore certain fundamental mechanisms of cable response intrinsic
to low tension behavior by considering a cable under zero initial tension. Excitation of
the cable is accomplished by the application of an impulsive load at one end and the
resulting tension and velocity distribution along the cable is studied for a variety of initial
configurations.

Understanding the dynamics of impulsively loaded cables is of importance as low
tension cables are often more susceptible to this form of excitation than are taut cables. To
understand why this occurs, consider that for low-tension cables, by definition the dynamic
tension component is of equal or greater magnitude than the static tension. Therefore, it is
very likely that the dynamic tension will act to cancel the static tension over a portion of
the loading cycle, a phenomenon often referred to as tension clipping (Shin, 1991). This can
occur even though the initial tension is high. Following the periods of zero tension, tensile
forces initially build-up over a short time span and can therefore be considered impulsive.
These forces, in turn, can lead to large cable accelerations and maximum cable forces nine
times the static payload weight have been found to occur (Goeller, 1970).

Needless to say, this can become a highly dangerous situation in many marine oper-
ations such as towing. Several authors, including Shin (1987), Milgram et al. (1988), and
Papazoglou et al. (1990), have described such dynamics, concentrating primarily on the
snap condition, at which the tension is maximum.

Herein we concentrate on the tension distribution and resulting velocities immediately
after the application of the impulsive load. The results presented here are summarized in a
recent paper by Triantafyllou and Howell (1992).

4.2 Formulation of Impulsive Equations of Motion

The equations of motion for a cable under impulsive loading have been derived previ-
ously, first by Routh (1955) and then Lamb (1914), and more recently by Triantafyllou and
Howell (1992). As with these previous authors, we consider the cable to be inextensible.
This condition of inextensiblity is based on the following assumptions: 1) the static tension
is of the order of the total weight of the cable; 2) the velocities applied impulsively on the
cable are small compared to the speed of elastic waves; and 3) one end of the cable is free
or the cable has large sag. The first assumption defines a low tension cable, the primary
focus of this research. The second condition ensures that elastic waves will not be excited,
while the third condition, combined with the second, ensures that the cable does not stretch
considerably. In fact, if one cable end is free, the tension is zero at that point at all times.
Therefore, for moderately long cables with high Young’s modulus (such as metallic cables),
the tension never builds to sufficiently large values to cause substantial stretching. If one
end of the cable is not free, however the cable sag is large, elastic effects remain small, even
for taut cables. This has been shown by Irvine and Caughey (1974). They determined that
the relative parameter which quantifies the effects of elasticity is A, where

EA w,L
A% = -ET(L)? (4.1)
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Here H denotes the horizontal static force applied at the cable end points. The parameter
A2 is proportional to the ratio of the elastic to catenary stiffness of the cable. This ratio
is typically very large for large sag to span ratios, i.e. large values of woL/H. When the
elastic stiffness is very large, the cable employs its catenary stiffness, thereby preserving the
cable length. In §6 we formally derive the expression for \.

As in §2, we derive the equations of motion using a lagrangian reference frame, fixed on
the cable, and we adopt the same nomenclature defined previously. We neglect the effects
of bending stiffness. However, forces in bending are treated in §4.4. '

The inextensible cable governing equations are given by

DV  D(T%) =
The impulsive equations of motion are determined by integrating (4.2). We denote
Ti(s) as the amplitude of the impulsive tension, developed at time ¢ = 0F, and define the
cable’s velocity immediately before and after the application of the impulsive tension as V'~
and V', respectively. Integrating (4.2) yields:

m(Vt -V") = ) (4.3)

We can express (4.3) in component form using the vector € t'o represent the local
curvature of the cable. At this point we define Q =(Q1, Q2,Q3) as the Darboux vector of
rotation (Hildebrand, 1976), which is given by the following:

1
o o= 2 (4.4)
Q = 0
Q = =

p

where p denotes the local radius of curvature and 7 the local radius of torsion. Note that
we have chosen to adopt the so-called principal directions (Hildebrand, 1976) for the unit
vectors (£, 7, l;) This is in contrast to the definitions used in §2, where the orientation of the
normal and binormal directions about the tangent direction was chosen arbitrarily. This
change has been made here because the use of principal coordinates greatly simplifies the
impulsive equations.

Using (4.4), we can express (4.3) in component form yielding

aT;
ds
mwt —-v™) = TiQ3
mwt -w™) = 0

mut—u") = (4.5)

The compatibility relations are derived on the same basis as in §2, i.e.
DV* Di
Ds — Dt

From (4.6), we find the following relations which are valid for both ¢t = 0~ and t = 0%,

(4.6)
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Figure 4.1: Cable in a straight line.

du

% - Qg'l} = (47)
d—v+Q3u—Qlw = w3

ds

d—w + Qv = —wq

ds

Eliminating the velocities from (4.5) and (4.7) provides a single equation in terms of
the impulsive tension.
d>T;
718_2 - QgTz =0 (48)
Equation (4.8) is an important result which shows that the impulsive tension is inde-
pendent of the geometric torsion, 21, and depends entirely on the local curvature of the
cable given by Q3. From (4.5) we find that the binormal velocity remains constant, while
the tangential and normal velocities depend exclusively on the curvature and magnitude of
the impulsive tension.

4.3 Solution of Impulsive Dynamics

We use (4.8) to derive closed form analytic results for several initial configurations.
These results are used to identify the impulsive tension distribution along the cable, as well
as the velocities that develop due to the impulsive loading.

4.3.1 CABLE IN A STRAIGHT LINE

Perhaps the most simple example to consider is a cable of length L, sitting at rest
in a straight line configuration on a horizontal frictionless table (figure 4.1). For this case
{23 = 0 because the radius of curvature is infinite. One end of the cable is suddenly pulled
at an amplitude T;(L) = T, while the other end is free, i.e. T;(0) = 0. Using these boundary
conditions and (4.8), the solution is obtained as




!

Figure 4.2: Cable in the form of a circle.

Ti(s) = ———zs (4.9)
T
+ = =2
ut(s) = T

All other quantities are zero. From these results we find that if the cable is initially
straight, the impulsive tension distribution varies linearly along the cable and the entire
cable begins to move in the tangential direction at the same velocity.

4.3.2 CABLE IN THE FORM OF A CIRCLE

Another simple example which can be solved exactly is the case of a cable of length
L sitting, at rest along a full arc of a circle of radius a, on a horizontal frictionless table
(figure 4.2). One end of the cable is suddenly pulled at an amplitude 7, and the boundary
conditions are given by T;(0) = 0 and T;(L) = T,. The solution of (4.8) is given by

sinh(s/a)

°sinh(L/a)
T, cosh(s/a)
ma sinh(L/a)
T, sinh(s/a)
ma sinh(L/a)

Ti(s) (4.10)

ut(s) =
vt(s) =

Thevsecond compatibility relation in (4.7) provides the angular velocity
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2T, cosh(s/a)

ma? sinh(L]a)" (4.11)

w3(s) =

4.3.3 CABLE IN THE FOrRM OF A HELIX

To show that the initial development of tension is independent from torsion, we con-
sider a cable with a three-dimensional initial configuration resting in the form of a helix,
ie. p=aand 7 =), where a and b are constants. Again one end of the cable is suddenly
pulled and we impose the same boundary conditions as in the previous example. The exact
solution is obtained as follows:

inh(s
T(s) = Ty 1 (412)
_ Tp cosh(s/a)

w'(s) = %sinh(L/a)
o (s) = T, sinh(s/a)

ma sinh(L/a)
wt(s) =0

2T, cosh(s/a
w3(s) = ma? sinh((L//a))
wals) = — T, sinh(s/a)

mab sinh(L/a)

As readily seen, the same tension and velocity distribution develops as with the two-
dimensional case of a chain in a circle, the only exception being that wy is nonzero. This
shows the independence of initially developing tension from torsion.

4.3.4 CABLE OF REVERSING CURVATURE

We next consider a cable of length 2L at rest on a frictionless horizontal table. The
cable configuration is comprised of two circular arcs of radius e and opposite curvature,
as shown in 4.3. The curvature 3 is discontinuous at the origin, which is fixed at the
midpoint of the cable, jumping from the value —--i— to the value ;1- When one end of the
cable is suddenly pulled with the impulsive force T,, the solution can be obtained as done
previously, and we find

sinh([s + L]/a) .

Ti(s)=T, (4.13)

sinh(2L/a) ‘

This is the same result obtained in the two previous examples, with the exception
that here the origin has been shifted and the length of the cable doubled. The tangential
velocity is also easily obtained. However, when we proceed to derive the normal velocity,
a physically impossible discontinuity appears in the velocity v (s) at the point where the
curvature is discontinuous. This can be shown by examining the governing equation in the
normal direction given by




Figure 4.3: Cable of reversing curvature.

vt (s) = %Qg(s)ﬂ(s). (4.14)

Furthermore, the angular velocity w3 develops a singularity, as evidenced in (4.7), when
v(s) is discontinuous.

A discontinuity in the curvature is possible only for a perfectly flexible cable. This
discontinuity can be removed by introducing the bending stiffness of the cable, which ensures
a smooth initial configuration. However, if the singularity identified in the case of reversing
curvature is related to a basic cable mechanism, than the manner of smoothing of the
solution is of importance.

To determine if in fact this is the case, we consider the same example of a cable with
reversing curvature at rest on a horizontal frictionless table, but we make the curvature
reversal smooth. The initial curvature is chosen as

-1/a -L<s<L ¢
Q3(s) =  s/ae -e<s<e
1/a e<s<L

where a, € are constants and ¢ < L. The solution when one end is impulsively loaded can
be obtained separately in the three regions defined above. In the first and third regions the
solution for the tension can be obtained explicitly as before, with two unknown constants
in each region. In the middle region the equation for the tension becomes:

d°T; §?

Using the substitution s = zé, with § = \/aé/2, (4.15) can be brought into the
standard form of the parabolic cylinder functions:
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T, =z ;
S -Zrm=o (4.16)
The solution of (4.16) can be expressed as the sum of two independent solutions of the
parabolic cylinder equation, scaled with two unknown constants. Since |z| < V2¢/a, we use
the small argument power series expression of the parabolic cylinder functions (Abramowitz
and Stegun, 1970) and match asymptotically the two outer regions with the inner (middle)
region. This provides four matching conditions which combined with the two boundary
conditions, the same conditions imposed in the previous examples, allows for the solution
of all six unknown constants. As ¢ tends to zero, we obtain the following asymptotically

valid results:

sinh([s + L]/a)

L) =T sinh(2L/a) (4.17)
+(s) = &cosh([s + L]/a)
U= e sinh(2L/a)

B T, sinh([s + L}/a)
vt (s) = Q3(s) — sinh(2L/a)

The rotational velocity suffers from a discontinuity at the edges of the middle region.
The expression for w3 in the middle region is, asymptotically

To sinh(L/a)
mae sinh(2L/a)’
The discontinuity at the edges can be removed by requiring that the first derivative of
the curvature is everywhere continuous. The importance of (4.18), however, lies in identi-
fying a mechanism for building large rotational velocities. We have found here that at the
point of curvature reversal, w3 is inversely proportional to the width of the transition region.

w3(s) = (4.18)

4.4 Impulsive Motion of a Cable with Bending Stiffness

We have shown the importance of the manner in which the cable curvature is made
continuous. For cables, the physical mechanism by which the curvature is made continuous,
prior to the application of any load, is bending stiffness. After the cable is loaded, tension
also acts to smooth the cable shape. Therefore, because the bending stiffness magnitude
affects how the cable is initially made smooth, it is natural to extend the analysis by
incorporating bending stiffness. Although the value of the bending stiffness only indirectly
affects the dynamic response, for completeness we include bending forces in the dynamic
equations as well, to study the direct effects of bending on the impulsive response.

As derived in §2, the governing equations incorporating bending stiffness, are given as

(4.19)

(4.20)




Due to the selection of principal coordinates, the moment vector M differs shghtly
from previously presented and is given by

M, = GLQ (4.21)
My = 0
M; = EIQ.

Note that Q in (4.21) is the material torsion, which is, in general, different from the
geometric torsion.

A nondimensional analysis of (4.20) was conducted in §2.3.2, based on which it was
concluded that the inertial forces are negligible. In the context of impulsive forces, however,
the relevant time scale is very short and large angular accelerations may develop, depending
on the initial configuration. Therefore, we choose to retain these terms here.

If equation (4.20) is integrated in time from ¢ = 0~ to 0%, we find that the contribution
of the term involving M vanishes, assuming the length of integration is such that insufficient
time has elapsed for the cable to alter its initial configuration. As a result, the shear
forces may become impulsive as they must balance a step change in the rotational velocity.
Otherwise, (4.20) will not be satisfied. One may explain the mechanism generating an
impulsive shear force as a limiting process of infinitesimal shear deformation and large shear
modulus, in complete analogy with the development of impulsive tension which involves
infinitesimal extension and large Young’s modulus.

Based on these considerations, we find that when the cable is subject to a forced
motion, both the tension and shear forces become impulsive. Therefore, integrating (4.19)
and (4.20) over the time period in Wh.lCh the impulsive load is applied yields the following
equations of impulsive motion:

m(Vt-V-) = PDl;i ' (4.22)
pl(@t-37) = ixT.

Expanding these equations along the (%, 7, 5) system gives

mut —u”) = i - S5, Q2 (4.23)
ds

m(v+ —v7) = ddSm + TiQ3 — Spif

mwt -w”) = égl-)i + Snifl

Ppr(wf. —wi)=
pel (Wi —wy) = —Sb,-
pel(w —w3) = Spi
together with the compatibility relations (4.7). It is interesting to note that wj did not

appear explicitly in the previous equations which neglect bending. The results here show
that w; is in fact zero, independent of the initial configuration.
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By eliminating the translation and angular velocities in (4.23) and (4.7), we find three
equations in terms of the impulsive tension and shear forces (note that, for brevity, the
subscript ¢ is omitted).

d2T ds, dQQ

-7 - TO? - 20— — s,,d—: + 21038, =0 (4.24)
d2Sn 2 2 2 dS[; dQl dT dQ3

— = (6 + Q7 - Q5)5, - 2Q; — — S§p—— —_ — =

232 (6% + Q1 3)S. 9 T S P + 2Q3 Is +T T 0

d2s, 5 5 dS, d

-EST—-(& +Ql)Sb+2QI-E+Sn_I;+QIQ3T—O

where §2 = m/(p.I).

For a cable of circular cross-section, 62 = 4/r2, where r is the radius of the cable
cross-section. As a result, we find § > (21, Q3) since neither the radius of curvature nor
the radius of geometric torsion can be as small as the radius of the cable. As we will show,
this implies the formation of boundary layers in shear.

4.5 Solution of the Cable Equations with Bending Stiffness

As an application we consider the two-dimensional impulsive motion of a cable, and
reduce (4.24) to the following:

ST . dp, . d% . dédS,
'd—;§' - T(-(-i;) - Snzs-i' - 2E-E—;- =0 (4.25)
dzsn 2 d¢ 2 d2¢ d¢ dT

752 —Sn(5 —(E;‘-) )+TF+2(—[S-E;—O

where ¢(s) denotes the initial angle of the tangential vector of the cable with respect to a
fixed direction.

We now reconsider the problem of a cable initially at rest in the form of a circle of
radius a (figure 4.2). The boundary conditions described previously are imposed, as well as
S, =0 at s = 0, L. To provide greater insight into the form of the equations of motion, we
normalize the spatial variable s by the radius of curvature and set z = s/a. In addition, we
define the quantity o = 4r2/a?, where by physical considerations, o < 1.

In terms of these quantities, the equations of motion are given as

T ,dSn
A el R 4.26
dz? T-2 dz 0 ( _ )
d2S, dT .
2o _(1- = =o. 4.27
o= —(1-a)Sa+2-—-=0 (4.27)

The form of (4.27) clearly suggests the formation of boundary layers in shear because
the highest-order derivative term is multiplied by ¢, meaning that, in general, it is not
possible to obtain a solution which satisfies both boundary conditions if the equations are
not reformulated near the boundaries. By conducting an asymptotic expansion in terms of
a and a boundary layer analysis near s = 0, L, we find the following asymptotic solution,
valid for a < 1:
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Figure 4.4: Tension (solid line) and angular velocity (dotted line) developing along a cable
of reversing curvature (figure 4.3).

sinh(s/a)
sinh(L]a) | (4.28)
+(s) = T, cosh(s/a)
¢ = e Sinh(L]a)
T, sink(s/a)
vH(s) = ma s'mh(L/ a)
Sa(s) = m—-—————afsf;f(; 7a) (cosh(s/a) — e~ /T — e=AL=3)/ "cosh(L/a))
w3(s) = Ezﬁi—(-ﬂ—j(cosh(s/a) — e~ Bl _ = HL=) "cosh(L/a)).

The correction, therefore, with respect to solution (4.10) is restricted to the boundary

T(s) =T,

layers formed at the two ends, affecting only the shear force, which is order «, and the -

rotationa.l velocity. Here we find w3 = 0 at s = 0, L, which differs form the solution given
in (4.11). The width of the boundary layer was found to be 1/8.

Next we consider the cable with reversing curvature (figure 4.3), wh.lch is the prime -

example which motivated this analysis. We consider a smooth initial curvature, in the form:

d¢ _ tanh(s/e) (4.29)
ds a A
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Figure 4.5: Analytically and numerically predicted tension along a cable lying in a circle
(fgure 4.2) immediately after the application of impulsive loading.

where ¢ < L, i.e. the reversal in curvature occurs within a small region. Obviously, €
is directly related to the length of the transition region of changing curvature, which in
turn depends on the value of the (usually small) bending stiffness of the cable. The initial
configuration requires a (small) distributed moment in order to sustain the static shape in
-the presence of bending stiffness. This moment, however, has an insignificant effect on the
developing dynamic response. '

A numerical solution of (4.25) for the curvature specified in (4.29) was obtained using
centered finite differences. Figure 4.4 shows the tension and rotational velocity along the
cable for ¢ = 0.01 and 4 = 1,000. The cable length is set equal to 2. As readily seen, a large
peak in the rotational velocity occurs at the curvature reversing region, which is inversely
proportional to the length over which the curvature reversal occurs (¢). Once again the
solution for w3 contains boundary layers near s = L and the width of the boundary layer

depends on 4.

4.6 Comparison of Analytic and Numerical Results

The numerical techniques presented in §3 were used to simulate the examples discussed
previously. In particular, the explicit finite difference algorithm was used extemsively to
model the dynamics in the absence of bending stiffness.

Numerical results were obtained for the cable initially in the form of a circle (figure
4.2). Figures 4.5, 4.6, and 4.7 show simulation results for the tension and normal and
tangential velocities, respectively, shortly after the impulsive tension was applied at one
end. Also shown are the analytic results derived in §4.3.2. As shown, the two results are

nearly indistinguishable.
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Figure 4.6: Analytically and numerically predicted normal velocity a.lohg a cable lying in a
circle (figure 4.2) immediately after the application of impulsive loading.

The example involving a cable of reversing curvature (figure 4.3) was simulated nu-
merically as well. A curvature change, as described in §4.3.4 was implemented, using a
moderately small value of € = 0.01 to avoid the development of sharp boundary layers.
Figure 4.8 shows the normal velocity immediately after the application of the impulsive
load (solid line). This solution coincides with the analytic results, provided a sufficient
number of nodes are used in the numerical scheme to ensure adequate treatment of the
boundary layer-type behavior. As predicted analytically, a steep change in the normal ve-
locity occurs at the point of changing curvature. Also shown is the response at several times
after the initial loading. We find that the effect of the large angular velocity imparted at

-the cable midpoint spreads over an increasingly larger region with time, demonstrating the

significance of the mechanism, particularly for small values of e.
In the next section, impulsive tension forces are addressed further, in the context of a

harmonically excited hanging chain. In this case, the tension prior to loading varies linearly
along the chain length.
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Figure 4.7: Analytically and numerically predicted tangential velocity along a cable lying
in a circle (figure 4.2) immediately after the application of impulsive loading.
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Figure 4.8: Transverse velocity along cable having initial configuration shown in figure 4.3,
at three time intervals.




V. ANALYSIS OF RESPONSE OF HANGING CHAIN

5.1 Introduction

A chain hanging freely under its own weight is subject to a static tension component
which varies linearly over the chain length, beginning with zero tension at the free boundary.
As such, a hanging chain exhibits both high tension behavior (near the top boundary) and
low tension behavior (near the free boundary) along its span. Therefore, the hanging chain
problem affords an opportunity to study the dynamics in both tension regions as well as
the transition between high and low tension behavior.

Herein we investigate the nonlinear dynamics of a hanging chain, driven by a planar
harmonic excitation at the top, first analytically and numerically and then experimentally.
We consider the dynamics of the chain in air to isolate and study the effects of geometric non-
linearities. As detailed by Triantafyllou and Howell (1993), asymptotic results demonstrate
a sensitive dependence on excitation frequency and amplitude. Results for moderately large
excitation amplitudes identify the existence of separate regions of stable two-dimensional
and stable three-dimensional response as a function of frequency, as well as a distinct region
in which all steady state solutions are found to be unstable. Numerical and experimental
studies were conducted to confirm these findings.

The finding of a three-dimensional response to a planar excitation has been shown
previously by other researchers studying the nonlinear dynamics of cables or strings as
well. Nayfeh (1979) and then Miles (1984) studied the nonlinear dynamics of a stretched
string, pinned at one end and subject to a harmonic planar excitation over its length. They
found that three-dimensional whirling motions develop over a discrete range of excitation
frequencies. Perkins (1991) found similar results for a suspended shallow sag cable subject
to an end point excitation. These previously studied problems differ from the present
analysis in that they each involved a constant static tension along the cable or string. To
the author’s knowledge, this is the first asymptotic analysis of a chain with variable static
tension.

In this section, we develop in detail the principal derivations and asymptotic results
first presented by Triantafyllou and Howell (1993). In addition, numerical and experimen-
tal results which were used to verify the asymptotic solutions are discussed. These results
have been summarized in a second paper by Triantafyllou and Howell (1992). Finally, we
concentrate on the response of the chain for larger excitation amplitudes.

5.2 Formulation of the Problem

The problem under consideration is the three-dimensional dynamics of a chain, hang-
ing freely under its own weight, as shown in figure 5.1. Here we simplify the governing
equations derived in §2 in the following manner. First, chains, unlike cables, are perfectly
flexible and therefore no forces arise due to bending stiffness. Secondly, because we are
considering the dynamics in air, the hydrodynamic effects of added mass and drag are
neglected. This creates some complications in that in the absence of damping, transient
motions will not decay. We therefore will consider the affect of incorporating a linear drag
model in §5.3.2. Finally, the chain is considered to be inextensible. Due to the condition for
zero tension at the lower end, this assumption is valid provided the excitation frequencies
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Figure 5.1: Cable configuration and coordinate system.

46




are small compared to the first elastic natural frequency and the imposed velocities are
small compared to the speed of elastic waves (Triantafyllou and Howell, 1992).

The governing equations and compatibility relations for the hanging chain problem
are found to be

du 06 0¢ _or
m(5; + Fru il cos(f)) = 3. "™ cos(¢) cos(h) (5.1)
m(%t—) + %‘téu cos(8) + %tﬁw sin(g)) = Tg—f— cos(6) + mgsin(g)
m(%—f - %U sin(8) — g—:iu) = —ng — mg cos(¢) sin(6)
v d¢ 0 . _ 09
F + ot cos(d) + o sin(d) = v cos(8)
ou_0, o 0 _ &
ds os on as" = o
u 09 ¢ _
3 ng - 53—21 cos(f) = 0.

The chain is considered to be excited harmonically at the top. This excitation is
confined to the global x-y plane and the excitation frequency X is chosen close to one of the

natural frequencies, defined as w. A small transverse velocity is imposed at the top, given
by:

v(t, s = L) = aV,cos(At). (5.2)

where V, is the velocity amplitude corresponding to a motion amplitude Y, = V, /A and a
is a small positive number, @ « 1. In addition, zero tension is imposed at the lower end
(s = 0) and the velocities, u and w are set to zero at the upper boundary (s = L).

Due to the direction of the excitation, we adopt the terminology that v and ¢ represent
the in-plane velocity and angle, respectively, while w and @ represent these quantities in the
out-of-plane direction.

5.3 Analytic Analysis

We derive the analytic solutions using asymptotic techniques. The main goal of the
analytic studies was to determine the response of the chain to a wide range of excitation
frequencies and amplitudes. In particular, the motions at the free end of the chain are
discussed.

5.3.1 ASYMPTOTIC SOLUTION

The first step toward obtaining an analytic solution of the hanging chain equations
was to employ a perturbation expansion. This expansion is made in terms of the small
parameter €, where € is given by @ = €3. The nature of the equations dictates that the
tangential velocity and tension are even functions in € while the remaining variables include
only odd terms. Therefore, incorporating the static solution, the perturbation expansion
can be written as follows:
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u(s,t) = €ua(s,t) + etuy(s,t) + O() (5.3)
u(s,t) = evi(s,t) + evs(s, ) + Vocos(At) %] +O(e5)

w(s,t) = ew(s,t) + ws(s,t) + O(ed)

#(s,t) = edi(s,t) + 63[¢3(s, 1)+ }—;gsin(/\t)] + O(%)

8(s,t) = €b1(s,t) + €303(s,t) + O(%)

T(s,t) = mgs+ To(s,t) + *Ty(s,t) + O(e5).

The expanded variables given by (5.3) are substituted into the governing equations and
compatibility relations and terms of each order in e are grouped together. The equations
to first order in € are found to be

o _ 9¢1
M = mgs R + mgdy (5.4)
%1 _
ot Bs
Owr _ —mas22L _ 9
" 955s — TN
o _ _%w
ot ds

With regard to the first-order equations, two points are worthy of note. First, as ex-
pected, these equations represent the linear solution of the hanging chain problem. Secondly,
no coupling between in-plane and out-of-plane motions exists to first order.

The first-order equations can be reduced to the following:

¢ O 9241
7 = 2939- + 93—832 (5.5)
826, 86, 824,

otz 29% +ygs 0s? "’

These equations are straight-forward to solve using the method of separation of vari-
ables (Carrier and Pearson, 1988) and the solution is given by

s = Al (5.6)
6 = B(t)-{l-zgi)-.

where z = 2w,/5/g, J.(z) denotes the Bessel function of the first kind and order n, and
A(t) and B(t) represent time dependent amplitudes. In concurrence with the method of
multiple time scales (Bender and Orszag, 1978) the unknown amplitudes are decomposed
into functions of two time scales, t and 7, where T represents the long time scale, which
is given by 7 = €3¢, anticipating the final result. This relation between time scales was
selected because secular terms first arise at order 3. The amplitudes are then expressed as
follows:
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Alt) = A(r)e™t +cc (5.7)
B(t) = Bi(r)e™'+cc

where ¢ is the imaginary unit, cc denotes the complex conjugate of the preceding quantity.
Using these results, we may now solve for the first-order velocities.

v = —-é%(iAleiwt+cc)Jo(Z) (5.8)
- _.g__ . twt
= B+ )y (a)

The natural frequencies are obtained from the requirement that, to first order in e,
the transverse velocities v and w are zero at s = L. This results in the classical equation
for the natural frequencies of a hanging chain, as given by

Jo(z,) =0 (5.9)
where
Zo = 2w\/§ (5.10)
(] g . .
The second order equations in € are found to be given by
Ousy 96y 041, _ 0D $1° + 6 :
; m(ﬁ- +w173t——v1—87) = 5, T (5.11)
LN )
9s 19 1
Solving these equations for T and ug and imposing ua(¢,s = L) = 0, we find
uy = Z%((A"’ + B2)e2t 4 co)hy(2) (5.12)

2 .
Ty = 35((244% +2BB)A () — (4% + B)eX! + cc)ha(2)]

where * denotes the complex conjugate and the functions hi(z) and ho(z) are defined as
follows:

hi(z) = Ji(2)? = Ja(2)Jo(2) = J1(2,)° .
ha(z) = 22%(Jo(2)? + J1(2)%) = J1(2)? = 22J1(2) Jo(2) — 2271 (20)2.

Finally, we proceed to investigate the third-order equations in e. The third-order
equations are found to be given by

v O¢3 - Yo, 9 Mt
rr gs——as gd3 = 5T (sA* + g) (e + cc) 3
Ov; 0O Ty 041 0:2041 ¢
—_ L L g§————— - gi— 5.13
or ot (uz +6101) + m Os gs 2 0s g 6 ( )
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Ow; 06, 0p1 T 06, 012 0142
B Ty T~ gy e
7] a 0 6,2 7,

ot  9s  or 2 o  Bs
303 aw:; 301 391 a¢1
Bs T Bs - ar Turg, thumigs
The expressions given by (5.6), (5.8), and (5.12) are introduced into (5.13) and the
spatial dependence is eliminated using a Galerkin procedure in which the resulting equations
are multiplied by the zeroth order Bessel function, corresponding to the nearest natural
frequency, and then integrating along the chain length. Finally, the secular terms are
removed from the resulting equations by imposing the following conditions:

1d4;
w dr
1dB;
w dr

= —[filo + 1) + fole +i[yp A247 + 1 B2A}] (5.14)
i[Y0BY B + 72 A3B} + v3 A1 A} By).

Here the following definitions are used:

£ o= Yoo
1 4&1 L
Yoap
fo = ol
Y = 2%
.
m = =
2&1
= 95
T2 = 20
B = 2a;

where
oy = /:o zJo(2)dz
ap = /0% 2Jo(2)%dz
/ozo 23J0(2)dz

ag = /oz.]o(z)hg(z)dz.
0

Q3

w = [7 O h(2) a(2) + Ta(2) 1 2)? — 2o ()2(2) = 20(2) a2

¥4

22

e = /ozo J(;(;) [42J0(2)J1(2)? — 4J1(2)® ~ 2271 (2)%Ta(2))dz

a; = ‘/O'z" 7o) [2ha(2) J2(2) — 2J1(2)° — 2Ry (2)J1(2) — 22J5(2) J1(2)?]dz
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hs(z) = —[_Jl_(z_)zilﬁ + (2.]1(2)2 — ha(2)) J2z(22) + ZJng).-?].

Note that the amplitude of excitation Y, is incorporated in the terms f; and fo and
the excitation frequency is expressed in terms of the detuning ¢, where

A
o= ((—;— 1). (5.15)

The amplitudes are further decomposed as follows:
Ay(r) = a(r)es® (5.16)
Bi(t) = b(r)em™),

Substitution of these expressions into (5.14) and grouping real and imaginary terms
yields:

1ld
;2{‘ = qlo —(®+p%) = 11(s* = r)] — 2y1prs (5.17)
1d
= = —[file+ 1%+ fol = plo = 20(¢® + %) + 11 (s = )] + 271qrs
1dr
oo = slo- 700 +5%) = 124 - p%) — 0% + )] - 2v2par
lds .
== = —rlo =2’ +5%) + 1 - %) - 130* + ¢))] - 212pgs.
Note that following Miles (1984), the phase angles have been removed by setting
p = a(r)sin(§) (5.18)
g = a(7r)cos(§)
r = b(r)sin(n)
s = b(r)cos(n)

where { = o7 — ¢ and n =071 — 7.

Steady state solutions are given by the fixed points of (5.17). Setting the time deriva-
tives equal to zero, two classes of fixed points are determined. The first class corresponds
to a 2-D response, where

p=a (5.19)
g=r=s5=0. (5.20)
From these fixed points, the 2-D solution is given by the following:

oa =+ [fi(o +1)% + fo] — v0a® = 0. (5.21)

The second class of fixed points correspond to 3-D motions. The fixed points are given

(5.22)



Substitution of these fixed points into (5.17) yields the following:

o+ [file + 1) + fo]
a
o —y0b? — 12a?(-1)N —=y3a® = 0.

—ya? - (-1)Y = 0 (5.23)

The solutions given by (5.21) and (5.23) are used to generate response amplitude ver-
sus frequency (or detuning) curves for a fixed excitation amplitude. However, we must first
determine if the corresponding solutions are stable.

5.3.2 STABILITY ANALYSIS

Stability of the solutions is determined by investigating the eigenvalues of the Jacobian
matrix formed from (5.17). In general, the real part of all four eigenvalues must be less
than zero for the solution to be stable to small perturbations (Jordan and Smith, 1987).
Otherwise, small perturbations will not decay in time.

In the absence of damping, the Jacobian matrix for this problem has zeros along the
main diagonal and is separable into two 2x 2 matrices. As such, all eigenvalues occur in com-
plex conjugate pairs. Therefore, the only solutions which do not grow exponentially in time
are those in which the eigenvalues are purely imaginary. Generally, solutions with purely
imaginary eigenvalues are considered neutrally stable and are sensitive to nonlinearities.

Incorporating a small degree of linear damping into the governing equations intro-
duces negative terms along the main diagonal of the Jacobian matrix. The net effect is
that all purely imaginary eigenvalues develop a negative real component. In other words,
all neutrally stable centers become stable spirals or stable nodes, depending on the amount
of damping. This finding is demonstrated in figure 5.2 in which the eigenvalues near a
saddle-node bifurcation are shown with and without damping. As a result, for this analysis
all solutions with purely imaginary eigenvalues will also be considered as stable.

5.3.3 RESULTS

Analytic results, for detuning values near the second natural frequency, are presented
for an excitation amplitude of 0.0087L. Figures 5.3 and 5.4 show the in-plane and out-of-
plane velocities, respectively, at the free end of the chain. The velocities are nondimension-
alized by /gL, which is directly proportional to wL. Note that for clarity, only one branch
of the two-dimensional solution is shown in figure 5.4.

As shown, several bifurcations, labeled from A to D, were found to occur. The bifurca-
tions at A and B are saddle-node bifurcations, while a pitchfork bifurcation occurs at D. At
C, the stability of the three-dimensional branch changes suddenly for increasing detuning
values. The variation of the eigenvalues along the associated three-dimensional branch is
shown in figure 5.5. Based on the variation of the eigenvalues, the stability transition at C
is identified as a Hamiltonian-Hopf bifurcation. This class of bifurcation has been identified
by other researchers in the past (Tsai et al., 1990).

As a result of the bifurcations that occur, a region develops in which no stable response
is predicted. For the example shown, this region lies between —0.08 < o < —0.035. The
dynamics within this region were investigated through numerical and experimental means,
as discussed later in this section.
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Figure 5.2: Effect of linear damping on eigenvalues near a saddle-node bifurcation.

As the excitation amplitude is increased, the unstable region increases and shifts to a
lower frequency range. This is demonstrated in figure 5.6, in which the excitation amplitude
is shown versus the unstable frequency region. As one would expect, the size of the region
vanishes as the excitation amplitude approaches zero.

5.4 Numerical Solution

The purpose of the numerical analysis was twofold. First, verification of the stable
response regions determined analytically was sought. By solving the fully nonlinear equa-
tions, the effect of higher-order correction terms beyond €* could be determined. Secondly,
the numerical approach provides a means with which to verify the existence of the unstable
response region and investigate the dynamics within the region.

The second-order implicit finite difference approximation scheme described in §3 was
applied to the set of equations given by (5.1). For simulations involving moderately large
excitation amplitudes the tension remains finite; however, for larger excitation amplitudes,
as discussed in §5.6, the tension does vanish and a small amount of bending stiffness was
incorporated for stability. 4

Numerical studies were first conducted for detuning values at which the analytic tech-
nique predicted a stable response. As shown in figure 5.7, good agreement was obtained
between the analytical and numerical solutions. Both the character of the response, i.e.
stable 2-D or 3-D, and the magnitude compared favorably. It should be noted that a small
amount of linear damping, corresponding to less than 1 percent critical, was incorporated
to eliminate starting transients.
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Figure 5.3: Stability curves: In-plane velocity at lower end versus detuning for excitation
amplitude Y, = 0.0087L, near the second natural frequency.
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Figure 5.4: Stability curves: Out-of-plane velocity at lower end versus detuning for excita-
tion amplitude Y, = 0.0087L, near the second natural frequency.
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Figure 5.5: Hamiltonian-Hopf bifurcation: Variation of eigenvalues along 3-D branch.

A numerical analysis of the unstable region (—0.08 < ¢ < —0.035) was also conducted
and results are presented for ¢ = -0.06 and -0.05. Figure 5.8 shows the time series records
for the in-plane and out-of-plane transverse velocities at the free end of the chain for o
= -0.06. The response is characterized by slightly irregular beating, despite the fact that
sufficient time has elapsed to eliminate starting transients. The power spectrum for the in-
plane response (figure 5.9) shows a widening of the frequency content around the frequency
of excitation. Further insight into the nature of the response is provided by constructing a
Poincare plot (figure 5.10) (Berg et al., 1984). As shown, at this excitation frequency the
beating motion is only slightly irregular and the response is close to quasi-periodic.

Time series records for the detuning value ¢ = -0.05, which lies further inside the
unstable response region, are shown in figure 5.11. As shown, the response is characterized
by irregular beating and the associated power spectra (figure 5.12) also demonstrates a
widening of the spectrum near the excitation frequency. The Poincare plot (figure 5.13)
exhibits a much more detailed structure than for the previous case.

Simulations were also conducted in which, after the starting transients had decayed,
damping was removed using a linear ramping function. Steady state solutions were found
to be only slightly affected. However, for simulations within the unstable frequency region,
the chain was found to lose tension and collapse. This prevented obtaining long time series
records, as required for Poincare plots. This topic is addressed further in §5.6.
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Figure 5.6: Bifurcation diagram: Excitation amplitude versus frequency region in which all
stationary solutions are predicted to be unstable.

5.5 Experimental Study

Experiments were conducted to verify the analytic and numerical results. The relative
simplicity of the physical problem under study allowed for a simple experimental setup.
However, the analytic results show a sensitive dependence on the excitation frequency and
amplitude, therefore, strict control was maintained over these two input parameters.

5.5.1 EXPERIMENTAL SETUP

Experiments were conducted at the MIT Ocean Engineering Testing Facility. A 1.75
meter chain was selected, having its second natural frequency at 1.04 hertz. Excitation of
the chain was accomplished by a LINTECH leadscrew positioning table, with a travel of
+8.5 centimeters, driven by a microprocessor-controlled SEIBERCO AIM-3400 closed-loop
digital servomotor. The tracking signal input to the servo controller (corresponding to the
desired motion at the top of the chain) was calculated in real time, by a NEC Powermate
1 286-class computer, from an initial user specified set of parameters and generated with
the help of an onboard METRABYTE DASH-16 12 bit D/A converter. An analysis of the
system determined that errors in the excitation frequency and amplitude were maintained
below 1 and 5 percent, respectively. An overview of the experimental setup is shown in
figure 5.14..

Several points along the chain were illuminated, using cotton balls soaked in a light
emitting fluid, and their in-plane and out-of-plane displacements recorded on video tape
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Figure 5.7: Numerical results (circles) compared with perturbation results (lines): In-plane
velocity at lower end for excitation amplitude Y, = 0.0087L.

using two separate PANASONIC PV160 video cameras. Displacement time series records
were then generated from the video data using a MOTION ANALYSIS VP110 motion an-
alyzer, located at the Woods Hole Oceanographic Institute, which calculates the center of
intensity and resulting motion of each light source on the chain.

5.5.2 EXPERIMENTAL DATA

A number of experimental runs were conducted for detuning values at which a stable
response was predicted analytically. Good agreement was obtained between methods, as
shown in figure 5.15. The character of the response, as well as the amplitude, matched
favorably and the results proved stable to perturbations. '

Based on preliminary experimental runs, the frequency region characterized by ir-
regular response appeared to be shifted to slightly higher frequency values than predicted
analytically. This trend is apparent in figure 5.15. Overall, however, the shift in t'requency
was found to be less than 2 percent.

Time series records, presented in figures 5.16 and 5.17, show the experimentally ob-
tained in-plane and out-of-plane velocities at the free-end for detuning values of -0.028 and
-0.047, respectively. As shown, the response is irregular, despite ramping the excitation
amplitude up to the desired value and allowing sufficient time for starting transients to
decay. The associated power spectra (figures 5.18 and 5.19) show a marked widening of
the spectrum, around the excitation frequency. This is in contrast to the narrow banded
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- Figure 5.8: Numerical results: Time series record for in-plane and out-of-plane velocities at
free end, with excitation amplitude ¥, = 0.0087L and detuning o = —0.06
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Figure 5.9: Power spectrum of in-plane velocity shown in 5.8.
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Figure 5.10: Poincare plot of in-plane velocity shown in 5.8.

1.5

150 y ' r -

Figure 5.11: Numerical results: Time series record for in-plane and out-of-plane velocities
at free end, with excitation amplitude ¥, = 0.0087L and detuning o = —0.05
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Figure 5.15: Experimental results (circles) compared with perturbation results (lines): In-
plane velocity at lower end for excitation amplitude ¥, = 0.0087L.

spectra obtained at other excitation frequencies.

5.6 Response to Large Amplitude Excitation

We investigate the response of the chain to excitation amplitudes in excess of those
studied previously. Much of the work detailed here is summarized in a paper by Howell
(1992). '

As discussed earlier the asymptotic analysis results predict that increased excitation
amplitude widens the frequency region in which all steady state solutions are determined
to be unstable. Therefore it is logical to investigate unsteady solutions for larger excitation
amplitudes. However, the numerical scheme was found to encounter stability problems when
bending stiffness was neglected. In addition, solutions within the unstable frequency range
were found to be unobtainable numerically when damping was removed. To understand why
this occurs, we further investigate the perturbation results to determine if it is possible for
the dynamic tension to cancel the static tension, thereby causing the chain to lose tension
over a portion of its length. Here we simplify the analysis by concentrating on the region
near the lower boundary because that is the location where it is most likely that tension
will be lost. :

Using the previously obtained results we find that

. Ta(s,t) +mgs  a?[1£ (3 — 4J1(2)?)] + 4
lim = .
30 mes 4
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Figure 5.16: Experimental results: Time series record for in-plane and out-of-plane velocities
at free end, with excitation amplitude Y, = 0.0087L and detuning ¢ = —0.028
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Figure 5.17: Experimental results: Time series record for in-plane and out-of-plane velocities
at free end, with excitation amplitude ¥, = 0.0087L and detuning ¢ = —0.047
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Therefore, if we express the condition for negative tension values to occur in terms of the
angle at the free-end we find

2

N T2 (w0

(5.24)

In terms of solutions near the second natural frequency, this means the angle must
exceed 1.61 radians for the tension to become negative. This corresponds to the free-end of
the cable slightly exceeding a horizontal orientation.

This analysis shows that, according to the perturbation technique, above a certain
level of response amplitude, and near resonance, negative tension occurs near the free end.
Since negative tensions cannot be sustained, the chain loses tension over a portion of its
length. This leads to increased angles, eventually resulting in the chain collapsing.

Numerical and experimental tests were conducted at larger excitation amplitudes
almed at verifying the numerical model so that it could be used as a tool for studying
the dynamics leading to the collapse of the chain. Results are presented herein for an
excitation amplitude of 0.017L and a frequency of 1.5 hertz, corresponding to a detuning
of 0.44. The excitation amplitude was ramped linearly in time over 2.0 seconds. This
short ramping interval was chosen to simplify the analysis by not allowing sufficient time
for exciting dynamics out-of-plane. A number of ramping intervals were investigated and
quantitatively similar results were obtained in each case. Therefore, the ramping interval
selected is not of importance.

Numerical studies were first conducted neglecting bending stiffness. Numerical results
for the chain shape at several different time steps, prior to the loss of tension, are shown in
figure 5.20. The lower one-fifth of the chain has been enlarged to show that only a small
segment of the chain loses tension. After tension is lost, the numerical scheme becomes
unstable and fails to converge.

As discussed previously, the cable equations are singular for zero tension if bending
stiffness is neglected. There is an additional singularity, however, when the tension becomes
zero which appears in the compatibility relations.

The compatibility relations derived in §2 are based on spatial and temporal continuity
of the position vector (¢, s). :

Once tension is lost, however, there is no physical mechanism that enforces slope
continuity in the line.” It is possible for a perfectly flexible cable to form corners in its’
configuration. As a result the compatibility relations in differential form, as derived in §2,
are invalid once tension is lost and a new set of compatibility relations must be devised to
preserve the chain length. One could also model the chain as a series of rigid links, however,
this would require an inordinate number of degrees of freedom thereby significantly reducing
the computational efficiency.

Both problems, i.e. the singularity in the equations of motion and the discontinuities
in slope, are eliminated by incorporating bending stiffness. Bending stiffness smooths out
discontinuities, as addressed in §4, and provides a physical mechanism for energy propaga-
tion in the absence of tension. For cables bending stiffness is the actual physical mechanism
that must be included for accurate modeling. For chains the link interaction is far more
complex to model, so we treat the chain as a highly flexible cable by adopting a small value
of bending stiffness as a mathematical fix of the singularities encountered. The numerical
procedure for incorporating bending stiffness presented in §3 was adopted for this analysis.

Numerical results after the chain has lost tension and collapsed were obtained using
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Fi'gure 5.20: Numerical results: Chain configuration at several times prior to the collapse
of the lower region. Segment in box enlarged on the right.

a nondimensional bending stiffness value of EI/mgL3 = EI* = 10~6. Computations pro-
ceeded through the onset of zero tension, eventually determining one-half cycle later that,
after tension has been restored, the chain intersects itself as shown in figure 5.21.

To demonstrate that incorporating bending a small degree of bending stiffness elimi-
nates the zero tension singularities, while not significantly altering the solution, figure 5.22
shows numerical results for two values of EI*. As shown, similar results are obtained for
an order of magnitude variation in flexural stiffness. Note that this is attributable to the
magnitude of the bending stiffness incorporated.

Figures 5.23 through 5.26 show the numerically obtained time series records for the
tension, tangential velocity, normal velocity, and angle, at four locations along the chain.
Figure 5.23 clearly depicts the transition from low to high tension. Near the lower boundary,

~ impulse-like tension peaks are exhibited, followed by periods in which the tension is nearly

zero. These tension peaks result in rapid variations in velocity, as shown in figures 5.24 and
5.25. Further up the chain, the response remains regular and behaves like the response of
a taut cable. In contrast, at the lower end the angle increases beyond the value of =, at
which time an entire segment of the chain loses tension and collapses (figure 5.26).

The normal velocity along the chain is shown in figure 5.27 for four different times.
As shown an energy wave is generated at the top which amplifies as it travels toward
the free end. Steep gradients in velocity develop which in turn give rise to large angular
accelerations. Eventually the angular momentum builds to where the tension is canceled
and the angle increases beyond .
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Figure 5.21: Numerical results: Predicted chain configuration as free-end intersects the
chain.

The dynamic tension along the chain, obtained by removing the static tension from the
total tension, is shown in figure 5.28 for the listed times. Figure 5.28 clearly demonstrates
that low tension effects are confined to a region encompassing less than 10 percent of the
total chain length, while the remaining chain exhibits a taut cable response.

Figures 5.29 and 5.30 compare experimental and numerical results for the chain dis-
placement at three different times. The lower half of the chain is isolated in figure 5.29,.
while the lower one-eighth is shown in figure 5.30. Note that the numerical results were
obtained using the small value of bending stiffness discussed previously. As readily seen the
numerical technique accurately predicts the displacement up to the point where tension was
lost and good agreement was found at the point where the chain intersects itself (t=3.8 s,
figure 5.30).

Figure 5.31 depicts the experimental results for the chain intersection with itself. This
intersection was found to occur at the same time predicted numerically. It should be noted
that the experimental tests did remain two-dimensional as demonstrated by the free-end
colliding with the chain.
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Figure 5.25: Numerical results: Normal velocity at four locations along the chain, for case
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VI. ANALYSIS OF ELASTIC CABLE BEHAVIOR

6.1 Introduction

Up to this point, we have considered the dynamics of cables with infinite elastic stiff-
ness. In this chapter we relax this restriction and incorporate elasticity in the equations of
motion.

The effects of elasticity can be separated into two categories; quasi-static stretching and
elastic or longitudinal waves. The significance of quasi-static stretching has been the subject
of extensive research in the past (Irvine and Caughey, 1974; Shin, 1987; Triantafyllou, 1984)
and will be addressed in §6.2. Insight into the importance of elastic waves can be gained
by considering the relative magnitudes of transverse and elastic wave speeds. Bliek (1984),
using the method of characteristics, derived expressions for the transverse and elastic wave
speeds Cyr and Cyy, respectively, for an elastic cable. Assuming a linear stress-strain relation,
the expressions are given by

T 1/2
Cy = =% 6.1
t gl ¢
1/2
Cu = =] (6.2)
m
Therefore, the ratio of wave speeds is roughly given by

Ca _[EA)Y/?

&= |7 ¢3

For low tension values this ratio is very large, therefore, the fundamental frequency
of elastic waves corresponds to a very high-order transverse mode. If the cable tension is
large, it must still remain below an upper bound given by the breaking stress. For metallic
cables, the upper bound is given by

T
L=H<m<E (6.4)

where p and p; denote the axial and breaking stress, respectively. Therefore, for metallic
cables, the ratio of wave speeds remains high regardless of the cable tension (Triantafyllou,
1986). , '
For the reasons discussed above, if the excitation frequency is narrow-banded and
corresponds to a low-order transverse mode, it can be assumed that elastic vibrations will
not be excited. However, if the excitation frequency is broad-banded, sufficient energy may
exist at high frequency to excite elastic waves.

The results derived in §5.6 (figure ??) demonstrate that the response of the hanging
chain to large amplitude excitation is characterized by impulse-like tension peaks. The
energy content of these tension peaks is broad-banded, which brings into question the
validity of neglecting elasticity in this case.

To resolve this question, a linear stress-strain model was incorporated into the implicit
finite-difference algorithm discussed in §3. An implicit time domain routine is necessary as
the high propagation speed of elastic waves would require prohibitively small time-step
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increments in an explicit algorithm (Sanders, 1982). To validate the model, we consxder the
linear dynamics of an elastic catenary.

It should be reiterated that a major reason for the increase in low-tension systems is
the frequent use of synthetic cables. Aside from the decrease in density, the modulus of
elasticity E of synthetic cables is appreciably less than that of metallic cables. As a result,
synthetic cables have reduced axial and flexural stiffness than metallic cables of equivalent
size. The reduction in flexural stiffness simplifies storage and handling of the cable. This in
fact is one of the major benefits of synthetic cables. The low axial stiffness, however, can
result in substantial stretching and thus a large buildup of potential energy. This makes
synthetic cables extremely dangerous in failure. For this reason, and the fact that the dy-
namics of highly extensible cables are not fully understood, large safety factors are used in
design and the diameters selected are often much greater than necessary, thereby reducing
their benefits to some degree.

6.2 Elastic Motions of Shallow Sag Cables

The elastic dynamics of suspended cables undergoing quasi-static stretching, i.e. no
elastic waves are excited, has received considerable attention. Much of the research was
aimed at resolving a discrepancy between taut-string results and inelastic horizontal cate-
nary solutions in the limit that the cable sag to span ratio approaches zero. A clear ex-
planation of the phenomena involved was presented by Irvine and Caughey (1974). Their
results demonstrate that the significance of elastic effects is governed by the ratio of elas-
tic to catenary stiffness, denoted as A2. Also shown was that for shallow sag cables, the
fundamental natural frequency of symmetric modes crosses the fundamental frequency of
antisymmetric modes at a critical value of A2, the so-called mode cross-over phenomena.
Triantafyllou and Grinfogel (1986) show that the dynamics of inclined cables are distinctly
different than those of horizontal cables in that frequency cross-overs do not occur and that
large dynamic tension amplification occurs in the region of avoided crossings. Their results
are based on more general asymptotic solutions, also derived by Triantafyllou (1984), in
which elastic waves are retained.

For completeness, we derive the linear solutions presented by Irvine and Caughey
(1974) in terms of body-fixed coordinates. These results are then used to verify the accu-
racy of the numerical algorithm. '

6.2.1 DERIVATION OF LINEAR EQUATIONS

We consider the dynamics of a perfectly flexible cable supported by two frictionless
end supports at the same level, as shown in figure 6.1. The cable is assumed to have a small
sag to span ratio, i.e. §/S < 1/8 where § and S denote the cable sag and span respectively.
Irvine and Caughey (1974) have shown that within the linear regime, i.e. small motions,
the out-of-plane dynamics decouple from in-plane dynamics. This is because, to first-order,
out-of-plane motions involve not additional cable tension. In addition, Rega et al. (1984)
demonstrated that for nonlinear motions, planar oscillations are stable, with the exception
of the case where the in-plane linear frequency is twice the out-of-plane natural frequency.
As such, we restrict our attention to two-dimensional dynamics. The two-dimensional
governing equations and compatlblhty relations for an elastic cable, as derived in §2, are
given by
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ou o, _ oT .

m(5; = 113;) = 35 "W sin ¢ (6.5)
ov 0, b

m(a-!-ug = T@s W, COS P

du 0¢ ie.
3s s 5t

ov o _ 09
‘a—s' + U'é'; = E(l + e)
T = FAe.

Here we have adopted the same nomenclature defined in §2, with the exception that the
angle ¢ is measured with respect to the horizontal, rather than the vertical, as shown in
figure 6.1.

We seek to study the linear dynamics of the cable by considering small motions from
the static configuration. Toward this end, we decompose the variables into static and
dynamic terms as follows:

T = To+Ty (6.6)
¢ = ¢o+¢1
e = e-+e;

where the subscripts 0 and 1 denote static and dynamic quantities, respectively, and all
dynamic quantities are assumed to be of order O(e), where ¢ < 1.
Eliminating all dynamic quantities from (6.5) yields the equations of static equilibrium.
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Ty . ’
—58_ = W,SIin (]50 (6.7)
To _3_¢g = w,Ccos Py
Js
Ty = EAey.

The solution of (6.7) gives the shape of the catenary. These equations can be written in a
more convenient form as follows:

H
To = ;
0 cos ¢g (6:8)
Odg _ a
T2 = Zoos?(go)
where H is the horizontal component of the static tension and « is given by
_ wol
a=— (6.9)

For cables with small sag to span ratios, the slope of the cable is everywhere small.
Therefore, cos(¢o) = 1 and the static solution can be expressed as

T~ H (6.10)

) a
sin ¢ ~ ¢g = I°

For small motions we can approximate the velocities in terms of small displacements
from the static configuration, as follows:

u %te (6.11)
v~ %

where p and ¢ are the tangential and normal displacements from the static configuration,
respectively.

Substitution of (6.6), (6.10), and (6.11) into (6.5), removing the static solution, and
retaining only first-order quantities yields

?%p oty aH
mIE = 5 ML (6.12)
82%q o 0¢1
mez = Np+H5;
O o _ T
s 1T T EA
dq o

3, TPT = ¢t

Note that we have removed the time derivatives from the compatibility relations by inte-
grating the two equations in time. For small displacements, longitudinal motions are small
compared to transverse motions. As such,

a _Oq
—< = 6.13
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therefore, we can neglect this term form the final equation in (6.12).
We eliminate the time dependence in (6.12) by considering harmonic motions, and
express the variables as follows:

p1 = pe™ (6.14)
q = ge™!
$1 = pe™t
T = Te:'wt

where w is the natural frequency of vibration. Introducing (6.14) into (6.12) yields

8T -aH
— 2~ = — ———
mw-p R L~ (6.15)
i = TE4 9%
mwq = T~L+H03
B _o _ T
s 1T T Ea
oq g
3~ %

Finally, we integrate the first equation in (6.15) with respect to space yielding

T(s) =h+ /0 s(iﬁg — mw?p)ds (6.16)

where A is a constant. Assuming quasi-static stretching, no significant longitudinal dynamics
are excited. The basis of this assumption is that for metallic cables, transverse wave speeds
are, in general, much smaller than those of longitudinal waves (Bliek, 1984). Therefore, for
low frequencies, longitudinal wavelengths are much greater than the overall cable length.
However, for high excitation frequencies, longitudinal wavelengths may be less than L, and
the quasi-static stretching assumption is no longer valid. This is an important consideration
which must be taken into account in considering synthetic cables, which have a smaller
Young’s modulus than metallic cables, and therefore, smaller longitudinal wave speeds.
Introducing (6.16) into (6.15) and combining expressions yields

32(1' 2~ ha
g tFi=—gz (6.17)
p .« h
9 .a_ h 6.18
3s I°Ea (6.18)
where
m
=™ 6.19

These equations are equivalent to the linear equations derived by Irvine and Caughey (1974)
and can be combined to form a single equation in §(s). Toward this end we integrate (6.18)
along the cable and impose the boundary conditions p(—L/2) = 5(L/2) = 0, which yields

b EAa/L/2 -

_Lac ds. 6.20)
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Substitution of (6.20) into (6.17) yields the linear equation for transverse motions.

826 2. XZ L/2 _
PR /_L/2 4da (621)
where EA z
A2 = Woliy2 )
() (6.22)

6.2.2 ANALYTIC SOLUTION OF LINEAR EQUATIONS

Solutions of (6.17) and (6.18) can be separated into two classes of mode shapes, i.e.
symmetric and antisymmetric modes. Herein, a symmetric in-plane mode is defined as a
mode in which the vertical component of the mode is symmetric, and vice-versa. We will
treat the two classes separately.

We first consider antisymmetric modes. According to (6.20), the additional tension
component 4 is zero, independent of the cable elasticity. Therefore, (6.17) reduces to

9%q
052

Solving this equation and imposing the boundary conditions §(0) = §(L/2) = 0 yields

+ 4% =0, (6.23)

27ns
L
where the nondimensional frequencies are given by f,L =2n7r andn=1,2,3....
We next consider antisymmetric modes. Solving (6.17) and imposing the boundary
conditions §(—L/2) = §(L/2) = 0 yields the following expression for §(s):

‘jn(s) = A, Sin( ) (6.24)

..\ _ ha cos(8s)
a(s) = LH,BZ(cos(,BL/2) -1 (6.25)

In order to determine the natural frequencies, (6.25) is substituted into (6.21), pro-
viding the following transcendental equation for SL:

tan(6L/2) = BL/2 - =5 (FL/2)* (6.26)

As stated by Irvine and Caughey (1974), (6.26) “is of fundamental importance in the
theory of cable vibrations.” In physical terms, A? expresses the ratio of elastic to catenary
stiffness. For cables with low elastic stiffness, i.e. A2 — 0, we recover the classic solution of
the taut string equation, where

,\Izimoﬁ”L =02n-1r, n=123... (6.27)

For large values of A2, the cable can be considered inextensible, and (6.26) reduces to
the transcendental equation for an inextensible catenary, where

tan(20) = 22 (6:28)

This equation was first derived by Rohrs (1851) and the first two roots are given by
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Figure 6.2: Dependence of fundamental natural frequency on A.

As derived previously, the fundamental frequency of antisymmetric modes is given by
B1L = 2w. However, as we have shown, solutions for the two limiting values of A? fall
on either side of this value. The relationship between A2 and the first root of (6.26) is
shown in figure 6.2. Of particular interest is that symmetric natural frequencies cross the
antisymmetric frequency for increasing values of A2. The cross-over point for the first mode
corresponds to A = 27, and a steep transition in frequency occurs near this value. Similar
frequency cross-overs occur at other modes as well (Burgess, 1985).

The mode shapes for longitudinal modes can be determined by introducing (6.25) mto
(6.18) and integrating along the cable from —L/2 to s. Imposing the boundary condition
#(—L/2) = 0 yields

#(s) = H(ﬂ—LF[(ﬁ Plyropr/ay+ L (SL?‘B('iS/L)+t an(BL/2)) - (s+ L/2)].  (6.30)

Note that for symmetric normal modes, longitudinal modes are antisymmetric.

6.2.3 NUMERICAL RESULTS

-In order to verify the numerical algorithm’s ability to model elastic cable behavior,
simulations of the suspended catenary problem were conducted for a range of A values.
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Figure 6.3: Transverse symmetric mode shape for A = w; numerical and analytic results
shown.

Specifically, we attempt to demonstrate numerically the transition in mode shapes predicted
by linear theory.

As discussed, the linear equations are derived on the basis of small displacements from
some known static configuration. Therefore, because the nonlinear terms are retained in
the numerical model, excitation amplitudes were maintained at small values. A separate
routine was developed to calculate the static shape, as input to the dynamic algorithm. In
addition, the boundary conditions were modified, with the new conditions being given by

u(t,—L/2) =0 (6.31)
v(t,—L/2) =0

u(t,L/2) =0

v(t,L/2) =0

Numerical solutions were obtained using a cable of unit length and the nondimensional
parameters a = 0.1 and A/H = 0.01. The normal and tangential velocities along the cable
were initialized according to the linear solutions given by (6.25) and (6.30), respectively.

Numerical results for the calculated symmetric mode shapes, after 20 cycles have
elapsed, are shown in figures 6.3, 6.4, and 6.5 for A = =, 2, and 3, respectively. Also
shown are the linear results derived previously. As readily seen, the two results are indis-
tinguishable and the numerical algorithm is able to accurately model the modal transition
that occurs.
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6.3 Extensible Dynamics of Hanging Chain

The asymptotic and numerical solutions of the hanging chain problem presented in §5
were obtained under the assumption that the chain was inextensible. In this chapter, we
consider the extensible chain dynamics to verify the validity of this assumption. In addi-
tion, the effects of reducing the elastic stiffness in the chain are investigated to determine
at which point elasticity becomes important.

6.3.1 MODERATE EXCITATION AMPLITUDES

The chain used throughout the experimental tests was comprised of steel links, roughly
5 mm in diameter. The equivalent nondimensional elastic stiffness was found to be on
the order of EA/w,L = EA* = 4 x 10°. This value will be used as a reference value for
determining the validity of neglecting elasticity. For this value of EA*, the ratio of elastic to
transverse wave speeds of of order 600 or greater. A synthetic chain of the same dimensions
would have a ratio on the order of 60. The ratio of the fundamental elastic frequency to
the driving frequency, assuming the elastic frequencies correspond to those associated with
free-fixed end conditions, is given by

_ n[BA]/?
e W

where 3, is the nt* root of the Bessel function of the first kind and order 0.

Numerical simulations were conducted using the excitation amplitude given in §5.4
(Yo = 0.0087L), for a range of EA* values. The excitation frequency was chosen to corre-
spond to resonance, i.e. o = 0. Figure 6.6 shows the tension time history, at four locations
along the chain, obtained using EA* = 4x 103. Also shown are the results for the inextensi-
ble chain. As readily seen, elastic effects are insignificant for values of elastic stiffness above
this value. This is attributable to the excitation frequencies remaining in a narrow frequency
band, well below the elastic frequencies. Therefore, for moderate excitation amplitudes, it
proves valid to neglect elasticity.

Numerical results are shown in figure 6.7 for a chain with very low elastic stiffness
(EA” = 100). The results show only a slight shift in frequency and amplitude occurs due to
elasticity. The first elastic natural frequency, in this case, is roughly 8 times the excitation
frequency.

(6:32)

6.3.2 LARGE AMPLITUDE EXCITATION

Here we consider the large amplitude response of a chain with elasticity. Results are
presented for the three cases listed in table 6.1. Figure 6.8 shows the tension time history,
at four points along chain, using the value EA* = 4.0 x 10* (case 1). Note that this value is
an order of magnitude below the reference value. As readily seen, elasticity does not affect
the chain’s dynamics for this case as elastic waves are not excited. These results show that
the excitation energy, although broad-banded near the point of the chain’s collapse, remains
below the fundamental frequency of elastic waves. The frequency ratio in this case is large,
as shown in table 6.1. Based on these results, and the results presented in the previously,
we can conclude that the results obtained in §5, which are based on the assumption the
chain is inextensible, are valid.
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Figure 6.6: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain (FA* = 4 x 10%).
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Figure 6.8: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain (EA* = 4.0 x 104).

Case# | EA* | w* (linear) | w* (observed) | r,

1 4 x 10% 314, — 80
2 4 x 10% 99.3 113. 25
3 4 x 104 31.4 36.6 8

Table 6.1: Case studies for analysis of elastic affects.

We next consider the effects of reducing the elastic stiffness further (cases 2 and 3).
For case 2 we find that elastic waves do begin to develop (figure 6.9) after the tension
peaks become sufficiently narrow in time, i.e. begin to look impulsive. Prior to the point
of maximum tension, no elastic effects are present. The observed frequency of the elastic
waves (table 6.1) differs from the value predicted by linear theory by roughly 14 percent.

As shown in figure 6.9, the elastic wave amplitude grows in the direction away from
the free boundary. The tension variation the occurs due to the elastic waves can be isolated
by removing the tension found for the inextensible case. Here we find an interesting result.
The elastic waves that form are not travelling waves. Instead, we find that a standing
wave develops that encompasses the entire chain. The mode shape of this standing wave is
shown in figure 6.10, along with the linear mode shape of a straight cable with free-fixed
boundary conditions. As shown, the largest discrepancy occurs near the free-end. In this
region the curvature is greatest and curvature has been shown to have a significant affect
on the elastic frequencies and mode shapes (Burgess, 1988). Curvature effects, therefore,

84




1.00

INELASTIC
ammeene EA"=40E3 H
0.65
TENSION
[ 0.30
]
‘0-05 T T T N T T 3 T
1.00 1.55 210 255 320
TIME

Figure 6.9: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain, FA* = 4.0 x 103.

may also account for the discrepancy in the observed elastic frequency.

Further proof that the elastic waves are stationary is provided by a contour plot of the
elastic tension variation along the chain in time (figure 6.11). As shown, the characteristics
are vertical, indicating elastic energy does not travel along the cable. If the elastic waves
did travel, the characteristics would have a finite slope, given by the elastic wave speed.
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Similar results were obtained for still further reductions in the value of EA* (case
3). Here, however, we find that elastic waves begin to develop at lower tension amplitirdes
(figure 6.12). In this case the fundamental elastic frequency is much closer to the excitation
frequency, i.e r, = 8. Again we find that the elastic waves are stationary and qualitatively
similar results are found for the mode shape (figure 6.13) and characteristics (figure 6.14).
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Figure 6.12: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain, EA* = 4.0 x 102.
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VII. HYDRODYNAMIC DAMPING IN VORTEX-INDUCED
VIBRATIONS :

7.1 Introduction

Elastically mounted cylinders and long, flexible cylinders experience vortex-induced
vibrations when placed normal to a flow. The amplitude of this process is self-limiting
with a maximum value approximately equal to one to two cylinder diameters. Laboratory
experiments have been conducted to measure forces on rigid cylinders that are oscillated
at a specific amplitude and frequency transversely to a uniform flow. These tests confirm
that there is power input into the cylinder vibrations at small amplitudes of motion, for
frequencies close to the Strouhal frequency of natural vortex formation, whereas there is
dissipation for larger amplitudes (King 1977, Staubli 1983, Bearman 1984). When a cylin-
der oscillates with a frequency that is within a narrow range about the Strouhal frequency,
the vortex formation process synchronizes with the motion of the cylinder in what is called
a condition of lock-in. Under lock-in conditions, a vibrating cylinder is subject to a sig-
nificantly increased drag force, up to three or more times higher than that of a stationary
cylinder.

Hartlen and Currie (1970) and several other authors (Bearman 1984) used the van der
Pol oscillator to represent qualitatively the self-limiting nature of the excitation lift force.
Alternatively, the concept of energy balance has been incorporated in models to predict the
response of long, flexible cylinders (Vandiver 1988). In these models, the direction of energy
transfer is dependent on whether or not the motion of the cylinder at a particular point
is correlated with the vortex formation process. Energy is assumed to be transferred from
the fluid to the cylinder at points where the motion is synchronized with vortex shedding
(lock-in condition), while it is assumed that the cylinder loses energy to the fluid at points
where the motion is not correlated with vortex shedding. At these points, the loss of energy
is modelled by an “equivalent” hydrodynamic damping term, calculated by linearizing the
quadratic drag force acting on the cylinder.

In this section we show, on the basis of experimental results, that the vortex-induced
lift force depends on the amplitude of the cylinder vibration in a manner which is charac-
teristic of a process containing a purely linear damping term. This provides a direct way of
evaluating the damping coefficient using laboratory measurements.

7.2 Hydrodynamic Damping Model for Harmonic Response

The force acting on a section of a slender circular cylinder of diameter d, vibrating
harmonically in the transverse direction relative to an oncoming flow of velocity V, is a
nonlinear function of the motion. We denote the lift force per unit span that is in-phase
with the velocity by L,(t) and its amplitude by L, and proceed to nondimensionalize it to
obtain the lift coefficient that is in-phase with velocity, Cp,:

L,

Cr. = 7> ,
b= Tpdv?

(1.1)

where p denotes the fluid density.
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Figure 7.1: The lift coefficient in-phase with velocity as a function of the amplitude-to-
diameter ratio (King 1977).
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Figure 7.1 shows a plot of the measured coefficient, Cy,,, of rigid pivoted cylinders ver-
sus the vibration amplitude for a nondimensional oscillation frequency close to the Strouhal
number (King 1977). Power input occurs when Cy, is positive and dissipation occurs when
Cr, is negative. Except for small amplitudes, when the vortex formation process is not well
correlated along the span of the cylinder, there is clearly a linear relation between the lift
coefficient and the amplitude of motion. Over a range of practical interest, typically for
amplitude to diameter ratios higher than 0.4, the curve can be approximated by a straight
line with negative slope. This is a distinct feature of a nonlinear process that contains a
term that can be modelled through a linear damping coefficient. The damping coefficient
can be directly obtained from the slope of the line. A simple representation of the lift force
curve is

Cr, =Co—)\% , (7.2)
where % is the amplitude-to-diameter ratio and C, and X are curve-fitting constants. Equa-
tion (2) is accurate if the cylinder vibrates with an amplitude that is larger than the thresh-
old amplitude.

It should be noted that the methodology to replace an amplitude-dependent excitation
by equivalent motion-dependent terms has been applied before in other fields to analyze
nonlinear phenomena, such as the value of wave-drift damping estimated from second order
wave forces (Faltinsen 1990).

Experiments have been conducted in the MIT Testing Tank Facility on rigid circular
cylinders of diameter 2.54 cm and span 30 cm, forced to move in a prescribed motion
transversely to a flow with constant velocity V' (Gopalkrishnan 1992). Figure 7.2 shows
several plots of the coefficient, Cf,, for harmonic motion versus the amplitude-to-diameter
ratio for various imposed frequencies, which are near the frequency of the maximum in-
phase lift coefficient. It is interesting to note that the slope of the various curves varies
little over a range of nondimensional frequencies, 1‘1,4, where f is the oscillation frequency in
Hertz.

For a purely sinusoidal force at circular frequency w = 27 f, equation 7.2 provides the
component of the lift force in phase with velocity:

Lo(t) = %pdV2 (co - ,\g) sinwrt, (7.3)
If we define
Le(t) = (%pdV2> C,sinwt, (7.4)
(1 o\ A
v(t) = wAsinwt (7.6)

where v(2) is the cylinder velocity, we can write equation 7.3 more simply as

Ly(t) = Le(t) — bpu(2). (7.7)
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Figure 7.2: Experimental measurements (Gopalkrishnan 1992) of the lift coefficient in-
phase with velocity as a function of the amplitude-to-diameter ratio for various values of
the nondimensional frequency parameter %.




In equation 7.7, the lift force that is in-phase with the cylinder velocity is decomposed
into two parts, one of which is a pure excitation force L¢(t) and a second term which is a
linear damping force bpv(t). Equation 7.5 can be used to obtain a direct estimate of the
hydrodynamic damping coefficient bs, once the curve-fitting constant A is determined from
experimental data. We define the hydrodynamic damping ratio, (3, as:

¢y = by, _P 1 A
h T omw T pe 413 St2°

where m is the mass per unit length of the cylinder and p. is the cylinder density. We
have assumed that the harmonic motion is at the Strouhal frequency w, = 27f, and write
the Strouhal number as St = %. Then, taking a metallic cylinder with specific density
equal to 5.0, specifying a Strouhal number of St = 0.17, and calculating A = 1.36 from the
experimental data in figure 7.2, we find that {, = 0.076 (7.6% of critical).

Both the damping coefficient, b;, and the pure excitation force in the direction of
the velocity, L., are independent of amplitude. The excitation force, however, is phase-
correlated with the velocity. This is important in any numerical calculation, as shown in
the sequel. For most applications in water, the structural damping is small in comparison to
hydrodynamic damping and may be neglected. In air, the structural damping is significant
and may be added directly to by.

(7.8)

7.3 Hydrodynamic Damping for Narrow-Band Response

Lock-in of a flexibly mounted cylinder, or a flexible structure is usually characterized by
a narrow-band response with characteristic beating oscillations. We can extend heuristically
the derivation of §2 to apply to these cases when the response is not harmonic. For example,
a three-dimensional plot of the lift coefficient in phase with velocity as function of the
amplitude-to-diameter ratio and the frequency of oscillation can be constructed from figure
7.2. Such plots have been provided by Staubli (1983) and Gopalkrishnan (1992). The lift
force that is in-phase with the velocity can be then represented then by the following, more
general equation

Cr,(w) = Hw)Co— Aw)A > | (7.9)

which is similar to equation 7.2, but includes the frequency dependence w in the curve-fitting
parameters H and A. The functional form of the curve-fitting parameters is determined
from experimental data, and C, and A are as defined before. Because of the similarity in the
the shapes of the curves in figure 7.2, we conclude that A(w) is very nearly constant over a
narrow frequency range and is equal to one. This results in considerable simplification for
use in numerical calculations.

The accuracy of equation 7.9 is subject to the same amplitude-threshold considera-
tions as those related to equation 7.2. In addition, one must note that, in order for equation
7.9 to apply to a multi-frequency response, linearity must be assumed, which is not the case
for all parameters relevant to vortex-induced oscillations. For example, the excitation force
for monochromatic excitation at nonlock-in conditions contains an additional component
at the Strouhal frequency. Thus, in order to employ equation 7.9, we must assume that the
dominant force component has a frequency content that is within a narrow band around a
specific frequency w, and that the response is still within the lock-in regime. Triantafyllou
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and Karniadakis (1989) have shown numerically and Gopalkrishnan (1992) and Gopalkrish-
nan et al. (1992) have shown experimentally that, in the case of a beating oscillation, 1.e.,
an oscillation consisting of two (or three equidistant) sinusoidal components, the harmonic
results can be used to predict the lift force in a multi-frequency response, provided that the
frequencies are sufficiently close together and within the lock-in regime. However, the drag
force in a multi-frequency response can not be calculated on the basis of harmonic results.

Hence, assuming that harmonic data can be used to calculate the lift force in a narrow-
band response, we can write H and A as integro-differential operators in the time domain.
The damping, as expressed by the term containing A, is still linear and resembles, in form,
the well-known, frequency-dependent damping of floating bodies in the presence of a free
surface (Faltinsen 1990).

If the cylinder motion has a narrow-band spectrum about w = w,, then we can exploit
the fact that the slope of the lift-force coefficient in-phase with the velocity for a given
imposed amplitude appears to be nearly frequency-independent (figure 7.2), and we can
write the time-dependent lift force approximately as

t

L0 = [ 2] Lo = bia(0) (7.10)
(t)

where 9(¢) is the slowly varying envelope of v(t). The damping coefficient, by, is given by

equation 7.5 with w = w,, and L., is approximately given as

w0 = H(wy)Co (%pdVi’) . (7.11)

As with the case of the purely sinusoidal response, the expression for by is simple and
can be determined directly from experimental data (figure 7.2). The difficulty in this case
consists of ensuring that the excitation is indeed properly correlated with the velocity. This
is straightforward in time-domain simulations, since one must calculate the envelope of the
velocity at each time step before using equation 7.10. Often, however, frequency domain
techniques are employed, resulting in considerable savings in computational expense; an
additional requirement must then be imposed, to ensure that the excitation is properly
correlated, viz.

[TILH;O " / Le(t)v dt] = -;—L?, [T@%o % /OTv(t)v(t)dt] : (7.12)

(7.13)
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Figure 7.3: Comparison between the measurements of the maximum double-amplitude
motion of a circular cylinder as a function of the reduced damping -C (Griffin 1981) and
calculations using the method outlined here.

7.4 Applications

Below, we provide the results of simple calculations of the vortex-induced response of
cylinders based on the concepts and equations derived in §7.2 and §7.3.

7.4.1 SPRING-MOUNTED, RIGID CYLINDER IN A UNIFORM CURRENT

We begin by considering the narrow-band, lock-in response of a flexibly-mounted, rigid
cylinder. The natural frequency of the system is equal to the frequency of maximum lift
coefficient in-phase with the velocity. A compilation of data for vibrating cylinders as a
function of the reduced damping from Griffin (1981) is shown, for comparison, in figure
7.3. The reduced damping is defined as the ratio of the structural damping ratio ¢, and the
quantity u, where

b,
=g (7.14)
1 2
_ zpdV

The term b, is the structural damping coefficient per unit span.
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Superimposed on the figure are calculations by the present method. Here, we have
modelled the transverse motion, y(t), of a rigid cylinder of unit span, having a mass m,
mounted on a spring of constant k and a linear dashpot of constant b,, and placed trans-
versely to a constant flow of velocity V. The following is the equation of motion that is
used for the calculations

2
m d?igt) d?(/igt) +ky(t) = £(t) . (7.16)

The right hand side of the equation, f(t), is the fluid force, which is written as the sum of an
added mass term and the lift force in-phase with the velocity, which is further decomposed
in accordance with equation 7.9. The method of harmonic balance together with equation
7.12 provides the solution plotted in figure 7.3. The calculations show good agreement with
experimental data, even for large values of structural damping when the response is smaller

than the threshold value.

+ b

7.4.2 TAUT STRING IN A SHEAR CURRENT

For the next application, we consider a taut string of length L placed transversely to
a spatially-varying current with nominal velocity V. The transverse response of the string,
y(t,s), is assumed to be described accurately by the following linear structural model and
a hydrodynamic force, f(s,1),

2

m2d 40, - 2 [T(s)%] +f(s,8) (7.17)
where s is the Lagrangian coordinate along the string, T'(s) is the static tension, m is the
mass per-unit-length and b, is the structural damping per-unit-length. The force, f(s, ), can
be decomposed into the approximate form of equation 7.10 with a hydrodynamic damping
force and an excitation force that is in-phase with the velocity. The decomposition also yields
a term that represents the added mass force. It is further assumed that the characteristic
wavelength of the string oscillations is much smaller than the length of the string, hence
the response is effectively that of an infinitely long string.

An important consideration in studying the response of long structures is the length
over which the vortex formation process can be assumed to be correlated. It is assumed
herein that vortex shedding is fully correlated over half of a wavelength of a travelling
wave. This is based on experimental measurements by Ramberg and Griffin (1976), who
evaluated the cross-correlation between velocities measured at two locations in the wake
of a vibrating cable, separated by a distance s along the axis of the cable: They found
nearly perfect correlation for all points between two successive nodes of the vibrating cable
for vibrational amplitudes above a threshold value. Also, Gharib (1989) showed through
visualization of the response of a flexible cylinder that there is full correlation in the vortex
formation process between two successive nodes, while, at the nodes, longitudinal vortical
structures destroy any vortex interconnection. The frequency of excitation within a half
wavelength is assumed to be equal to the frequency at the anti-node, where the maximum
amplitude occurs.

Equation 7.17 can be solved together with equation 7.10 to provide the time-domain
response of a cable, even when the response is not monochromatic. The present analy- -
sis is applicable provided that the response is narrow-banded and the maximum response
amplitude is larger than about 0.4 diameters.
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Here, we used standard frequency-domain techniques to solve equations 7.10 and 7.17
and obtain the vibration amplitude of a tow cable in a shear current. The presence of shear
current causes the vortex-induced vibrations to be amplitude modulated. The excitation
force depends on the slowly varying envelope of the velocity of vibration, hence the solution
is obtained by iteration. Once we calculate the vibration amplitude, we use the laboratory
measurements of Gopalkrishnan (1992) to estimate the drag coefficient.

We compared our predictions against the following data from full-scale experiments of
towed cables in shear currents:

1. Data from Yoerger et al. (1991) for run 1A in the authors’ notation, involving a
1,200-meter cable towed nearly vertical at 0.5 m/s in the presence of a measured shear
current. The configuration of the cable was recorded using acoustic transponders, and
from these measurements the drag coefficient was estimated to be equal to 2.47 +0.24.
By using the measured shear current and the procedure outlined above, we obtained
a spatially varying drag coefficient along the cable length, between the values of 2.0
and 2.7, with an average value of 2.21.

2. Data from Yoerger et al. (1991) for run 2A involving an 800-meter cable towed at
0.5 m/s in the presence of a shear current. The calculations provided an average drag
coefficient of 2.05. The measured full-scale drag coefficient was 2.24 +0.24.

3. Data from figure 14 in Grosenbaugh (1991) for a cable 1,200-meters long towed nearly
vertically in a transient condition. Our calculations gave a spatially varying drag
coefficient in the range of 1.7 to 2.7, with an average value of 2.08. The average drag
coefficient from the full-scale measurements was 1.95 +0.20.

4. Data from figure 3 in Grosenbaugh (1991) corresponding to a 1,200-meter tow cable
that had reached steady-state conditions. The calculation provided a spatially varying
drag coefficient in the range of 1.6 to 2.4, with an average value of 1.95. The estimated
average drag coefficient from the full-scale measurements was 2.15 +0.20.

7.5 Summary

The basic result of the present work is that a linear hydrodynamic damping term
is an intrinsic feature of vortex-induced vibrations in the lock-in regime, as experimental
results demonstrate. The value of the linear damping term can be obtained directly from
forced-motion tests on rigid cylinders. This allows simple and efficient calculations of the
vortex-induced response under lock-in conditions of flexibly-mounted, rigid cylinders and
long flexible cylinders.
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VIII. VORTEX-INDUCED VIBRATIONS AND DRAG
AMPLIFICATION IN SHEAR FLOWS

MICHAEL S. TRIANTAFYLLOU
Department of Ocean Engineering
Massachusetts Institute of Technology
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1. INTRODUCTION

FOCUS: THE AMPLITUDE OF VIBRATION
AND RESULTING DRAG
COEFFICIENT AMPLIFICATION IN-
SHEAR FLOWS OF CABLES AND
MOORINGS

Un L Y
~ //
I U\ ~7
S - A FIGURE 1
/

IN A SHEAR FLOW AND/OR WHEN THE
CABLE IS CURVED THE NORMAL VELOCITY
TO THE CABLE VARIES WITH THE LENGTH (s)

AS A RESULT THE FREQUENCY OF VORTEX
FORMATION {, VARIES ALSO

foe (%) 2

@Q ~ 0.20
o = cable diameter
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WHEN YOU SUPERPOSE TWO SINUSOIDS OF
DIFFERENT FREQUENCY, W, AND W), , BEATING
OSCILLATIONS RESULT IF

‘M—w,_\ << w4)w2.

} BEATING OSCILLATIONS ARE CHARACTER-
ISTIC OF CABLE VIV IN SHEAR FLOWS

317\&%{ + S\"’\U)»;_JC, = 2 S.I‘T\G)—L;ﬂw" t'> COS@'?:&T t)

”b\/vwwuw

("3\‘\'@’1)/7‘ (3\%—52-_\*
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FIGURE 2
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2. EXCITATION

THE EXCITATION IS CAUSED BY THE LIFT
FORCE PER UNIT LENGTH:

O <tea® 4,

WHERE C_ (t) VARIES NEARLY SINUSOIDALLY
IN TIME AT FREQUENCY EQUAL TO (1) THE
STROUHAL FREQUENCY (STATIONARY
CYLINDER), (2) THE EXCITATION FREQUENCY
(LOCK-IN REGION), (3) COMBINATION OF
EXCITATION AND STROUHAL FREQUENCIES
(NON-LOCK-IN), (4) COMBINATION
FREQUENCIES WHEN EXCITED BY MANY
SINUSOIDS.

(1) WHEN THE CYLINDER IS STATIONARY,
C_ (b VARIES AT {,, AND HAS A POSITIVE
COMPONENT WITH RESPECT TO
VELOCITY (L.E. IT PUTS ENERGY IN THE
SYSTEM).
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(2)

IF THE CYLINDER IS EXCITED AT
FREQUENCY £ AND AMPLITUDE A, THEN
THE LIFT COEFFICIENT IN PHASE WITH
VELOCITY, C., DECREASES IN MAGNITUDE
ALMOST LINEARLY AND BECOMES
NEGATIVE AT ;\A_ ~ 4.0

CLv \
0.7

FIGURE 3

10 AL
WHEN THE CYLINDER IS EXCITED AT {4 f,
AND AMPLITUDE A, THE SAME PLOT IS
OBTAINED AS ABOVE BUT WITH SMALLER

AMPLITUDE INITIALLY.

/\C LV

030 £+ 4,

A/d
FIGURE 4




A COMPOSITE THREE-DIMENSIONAL PLOT
LOOKS LIKE THIS

3)

LV

Areal AO

FIGURE 5
WHEN THE CYLINDER IS EXCITED AT TWO

FREQUENCIES, (Wi, w.) THEN WE
DISTINGUISH THREE CASES:

O W, ,W, in Ag
M w, in A W, outside
[Or, (k)1 OLLJE.S\.C\Q_ Ao 5 U)L in Aoj

) w,, W, ouwtside A
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(4)

CASE III IS UNIMPORTANT, CASEII IS -
SIMPLE, BECAUSE C,, IS ALMOST THE
SAME AS WHEN THERE IS ONLY ONE
EXCITATION FREQUENCY (THE ONE

INSIDE Ac). CASE I, HOWEVER, REQUIRES
EXPERIMENTAL DATA.

WHEN THE CYLINDER IS EXCITED AT
MULTIPLE FREQUENCIES (MORE THAN
TWO), IN PRINCIPLE, THE PREVIOUS CASE
(TWO FREQUENCIES) PROVIDES A GOOD
DESCRIPTION OF THE QUALITATIVE
RESPONSE. |
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3. DRAG COEFFICIENT

(1) THE DRAG COEFFICIENT HAS THE
NOMINAL VALUE 1,2 WHEN THE CABLE IS
STATIONARY. WHEN THE CABLE IS
MOVING AT AMPLITUDE A AND
FREQUENCY f1,, THEN C, INCREASES:

CD ~ CDO * @methcqﬁov\ -Cac(for)

IF THE FREQUENCY f{#{, THEN
AMPLIFICATION IS LOWER.

\Co |
1+ A _
/\¥" 3707

R

,. . FIGURE 6
1.Q 4 F/ fv

(2) IN CASE OF TWO OR MORE FREQUENCIES
OF EXCITATION, <y VARIES
CONSIDERABLE AS A FUNCTION OF
FREQUENCIES AND AMPLITUDES
IMPOSED.




BEATING OSCILLATIONS

TYPES OF BEATING

M/}/\ A Jackt
WRVANYIV 4 TYPE I

wﬁ%ﬁwk s

il \U\M VRV \

/ N D TyPE LI

AN N
A \\/\ L//U/W\v\ J ,L//V/w

THE FOLLOWING MODELS DESCRIBE THE
VARIOUS TYPES:

Y4 = A sinwt {4 4+ 2 COS SQ

FIGURE 7

TYPE

N~ Pl Nl*

I X =
T <
T

A CASE OF PARTICULAR INTEREST IS




EXPERIMENTS ARE NEEDED TO FIND & IN
BEATING OSCILLATIONS FOR ALL THREE -
TYPES AS FUNCTION OF W, &, &, A

ONE SHOULD NOTE: THE REASON C; IS A

COMPLICATED FUNCTION OF BEATING
CHARACTERISTICS IS THAT WHEN THE
AMPLITUDE IS SMALL VORTEX SHEDDING
RESEMBLES THAT OF A STATIONARY
CYLINDER. WHEN THE AMPLITUDE IS LARGE,
IT RESEMBLES THE LOCK-IN CASE. THE
SWITCHING BETWEEN THESE TWO MODES IS
NOT SMOOTH AND AT TIMES IT IS RANDOM.
HENCE AVERAGING C; IS A COMPLICATED
MATTER.
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4. C, PREDICTIVE MODEL

BASIC RELATION
~ oy o _A_
C‘L\/ h H (‘];:) CLVo G <{_~°> O\ (1)

THIS RELATION IS OBTAINED BY CURVE-
FITTING EXPERIMENTAL DATA. H(X), G(X)
ARE FUNCTIONS DETERMINED BY THE DATA.
C.., C.vo ARE AMPLITUDES OF DRAG
COEFFICIENT, EXPERIMENTALLY
DETERMINED. THE EXACT MEANING OF THIS
EQUATION IS FAR MORE COMPLEX THAN
WHAT APPEARS AT FIRST SIGHT: THE
FUNCTIONS H AND G ARE FUNCTIONS OF
FREQUENCY, SO IN THE TIME DOMAIN THEY
REPRESENT INTEGRO-DIFFERENTIAL
OPERATORS. ALSO, THIS IS THE AMPLITUDE
OF C, IN PHASE WITH VELOCITY. FOR
EXAMPLE, IF THE IMPOSED MOTION IS
SINUSOIDAL AT FREQUENCY f =f,, THEN THE
EQUATION ABOVE RESULTS IN THE
FOLLOWING RELATION: :

Cy = ELV Cos <‘ZTL fv -L> )
&, =0.70 {1 _ ﬂ 3

y(£) = A sin (‘LTL £ 4) (4)
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WHERE THE EXACT SHAPE OF Cy IS
SUGGESTED BY FIGURE 3.

IF Y(t) IS NOT EXACTLY SINUSOIDAL, BUT IT
HAS A NARROW BAND SPECTRUM AROUND ¢,
THEN (2) THROUGH (4) ARE WRITTEN AS:

CL\I =0.70 ._\_/,._CQ_ — _9:7_0_-— \% (“f) (5)
) and,d -
WHERE (/(t) DENOTES THE ENVELOPE OF

V) = iil.g@

. IN THE GENERAL CASE (5) CAN BE EXTENDED

TO ACCOUNT FOR DIFFERENT FREQUENCIES
THAN f, .
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THE COEFFICIENT C,, IS OBTAINED BY
TAKING THE CROSS-CORRELATION BETWEEN
C,.(t) AND V()

@@y =lin = ch@) v(E) 4t (6)
T-w
T

e (b)) , v(iB> 7)
fz (), v(E)> |

V(&) ,V (£)> IS THE AUTO-CORRELATION OF V (%)

Cy =2

T

NOVE>=ln = [ VIE It g

2T
T>® -T
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5. CABLE PREDICTIVE MODEL

VORTEX-INDUCED VIBRATIONS ARE OF HIGH
FREQUENCY. THE APPROPRIATE MODEL FOR
LONG CABLES IS THAT OF A STRING WITH
VARIABLE PROPERTIES:

m Y 53 _ 3|7 | 4 £(5,%)
Jt’ Jdt 85 3s

' THE END EFFECTS ARE NEGLIGIBLE, SO AN

INFINITE LENGTH MAY BE ASSUMED. THE
GREEN’S FUNCTION DUE TO A SINUSOIDAL
FORCE OF AMPLITUDE f,, SITUATED AT s=§,
OF FREQUENCY w, IS

S W)= <§> S v
G5 0)=- !<(§>T<if> E(ss) o

E(S)gvzﬁxp {_i j, |<(><) &x} |
3 (10)
£ s>5  than {S,_:S ; else {Sl:j

S4 = S =S

_mw —iwb (11)
k(g) = 0 T(’;)
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IF THERE IS DISTRIBUTED FORCE OF :
VARIABLE FREQUENCY ALONG THE LENGTH

JOLE Re.ia@ eiw@”}

(12)
THEN THE RESPONSE IS
V(s,t) =Re g £06) cw@t G (s) i w@) cif}
‘ (13)

WHERE RE(X) MEANS REAL PART OF X.




6. CORRELATION LENGTH

VORTICES SHED BEHIND A LONG CYLINDER
ARE CORRELATED OVER DISTANCES WHICH
DEPEND ON THE REYNOLDS NUMBER, THE
CHARACTERISTICS OF THE SHEAR FLOW, THE
INTENSITY OF TURBULENCE AND THE
AMPLITUDE AND FREQUENCY OF THE
CYLINDER’S MOTION.

IN A STATIONARY CYLINDER, THE
CORRELATION LENGTH IS SMALL (2-5
DIAMETERS FOR REYNOLDS NUMBER ABOVE
4,000). WHEN THE CYLINDER MOVES,
HOWEVER, SIGNIFICANT SELF-
ORGANIZATION OF THE FLOW OCCURS.
VISUALIZATION PICTURES SHOW COMPLETE
ORGANIZATION AT THE ANTINODES, WHILE
AT NODES THREE-DIMENSIONAL EFFECTS
DESTROY CORRELATION.

USING THESE BASIC FACTS, WE OBTAIN THE
FOLLOWING CONDITION FOR THE
CORRELATION LENGTH Lc(s)

me‘— LWb L CS> ~TC (14)
T6) y




7. IMPLEMENTATION

THE MODEL IS IMPLEMENTED AS FOLLOWS:

(1) THE NORMAL VELOCITY U, IS FOUND AT
EACH POINT OF THE CABLE AND HENCE
THE STROUHAL FREQUENCY f;, Ws

U
= St) =2

(15)

\US:. 1']"[-?

s
(16)

(2) USING EQUATION (14), THE CORRELATION
LENGTH IS DETERMINED ALONG THE
- CABLE LENGTH, LE. Lg(s)

(3) THE RESPONSE Y(s,t) IS FOUND FROM
EQUATION (13) USING A FORCE MODEL
CONSISTING OF CORRELATED CABLE .
SEGMENTS OF LENGTH L(s) OSCILLATING
FREQUENCY w¢(s). FOLLOWING EQUATION
(1) THE FIRST TERM

H G—%-> ELV
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PROVIDES THE AMPLITUDE OF THE
EXCITATION FORCE, WHILE THE
SECOND TERM

£\ A
-G (%) I
PROVIDES DAMPING. THIS IS MORE
CLEARLY SEEN FROM EQUATION (5):

- Y 5y 9 ayl_
m s L er < °r |\ =
" + 5T s [TCS) AR

= ‘C CS)JC> =

X dy
1 vt _Oof ,__l




WHERE b IS THE STRUCTURAL DAMPING.
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IX. ANALYSIS OF THE DRAG AND VORTEX-INDUCED
VIBRATIONS OF THE SAIC CABLE WITH HAIRED FAIRING

9.1 Introduction

This report contains the results of experimental measurements and numercial calcula-
tions of the hydrodynamic forces of the SAIC cable with haired fairing. In the experiments,
we measured lift and drag forces of the cable section undergoing forced oscillations. We
then used these data as input into our numerical model that calculates drag coefficients and
flow-induced vibrations of long marine cables (made from the same material that is being
tested) in a shear current.

The experiments were performed at the Massachusetts Institute of Technology (MIT)
Towing Tank using a special apparatus (figure 9.1) that we designed to oscillate a cylinder
transverse to a flow. The apparatus was attached to the towing carriage and towed down
the tank at a constant velocity. At the same time, the cylinder was oscillated up-and-down
with a given motion and at a constant frequency.

The lift and drag forces were measured using a highly sensitive and mechanically stiff
three-axis quartz piezoelectric force transducer. The position of the cylinder was measured
with a Linear Variable Differential Transformer. The analog signals from these instruments
were low-pass filtered at 100 Hz (to avoid aliasing) and then recorded digitally at 400 Hz
using a 16 channel A/D input converter with sample-and-hold capabilites.

motor control
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motor
controllar
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motor
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(position measurament)

_

signal
conditioner lead screw

assambly

direction
of

motion
y V70

side supports
(yoke)
lest cylinder ond plates

. force Iransducee.. . .
data-acquisition {inside side support)
FC

Figure 9.1: The experimental set-up used in the Towing Tank.
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All of the forced oscillation experiments were performed at a towing speed of 0.4 m/s.
This corresponds to a Reynolds number of approximately 10,000 which is typical for marine
cables operating in the open ocean. The cylinder motion z(t) was pure sinusoidal at a given
oscillation frequency f, and an amplitude-to-diameter ratio of 7’1—:

z(t) = % sin 27 f,t (9.1)

Three values of % were tested: —’} = 0.15, % = 0.30, and % = 0.50. At each of the am-
plitudes we tested 25 frequencies ranging from 0 to 2 times the Strouhal frequency. The
Strouhal frequency is the frequency of vortex shedding corresponding to the case of station-
ary motion and is defined as:

si=L (9.2)

where f, is the vortex shedding frequency, d is the cylinder diameter, and U is the tow
speed. For a smooth circular cylinder, St = 0.2; for the SAIC cable, St = 0.14.

The experimental data will be presented in graphical form in terms of the lift and
mean drag coefficients. The lift and mean drag coefficients are defined as:

L,

Cr = —=2— (9.3)
%plan2
Dm

where L, is the amplitude of the oscillatory lift force and D,, is the mean drag force. The
water density is p, the cylinder length is [, the cylinder diameter is d, and the towing ve-
locity is U. :
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Mean drag coefficient; stationary smooth cylinder; Re = 10,000
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Figure 9.2: One hundred, twenty-two (122) measurments of the mean drag coefficient of a
stationary smooth circular cylinder measured over a two year period.

9.2 Experimental Results
9.2.1 RESULTS FOR SMOOTH STATIONARY CYLINDER

The purpose of figures 9.2 — 9.4 are to show the accuracy of the apparatus in mea-
suring lift and drag forces on cylinders. There is much data in the scientific and engi-
neering literature for smooth circular cylinders that are held stationary. Over the past 2
years, we have accumulated data for smooth circular cylinders as a measure of the accuracy
and consistency-over-time of our apparatus. Our measurements of mean drag coefficient,
Strouhal number, and lift coefficient are within the accepted ranges for published values.

Typical values for the mean drag coefficient for a Reynolds number of 10,000 are Cp
equals 1.1 to 1.3. The average of our 122 measurements that we have made over a period
of 2 years is 1.1856 with a standard deviation of 0.0315 (figure 9.2).

Strouhal numbers for stationary smooth circular cylinders have been measured between
0.18 and 0.22. Our average for the 122 measurements is 0.1932 with a standard deviation
of 0.0014 (figure 9.3).

Values for lift coefficients (measured by others) range from 0 to 0.8 and typically have
scatter due to three-dimensional effects. Our data (figure 9.4) is consistent with these past
studies.
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! ~ Figure 9.4: One hundred, twenty-two (122) measurments of the lift coefficient of a stationary
|
|

Strouhal number; stationary smooth cylinder; Re = 10,000
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Figure 9.3: One hundred, twenty-two (122) measurments of the Strouhal number of &
stationary smooth circular cylinder measured over a two year period.
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9.2.2 LirT COEFFICIENTS FOR SAIC CABLE WITH HAIRED FAIRING

The most important data for determining the equilibrium motion of a freely vibrating
cable (i.e. amplitude and frequency of motion of the cable) is the lift coefficient in phase
with the cylinder velocity. If this value is positive, then energy is being pumped into the
cylinder, and its amplitude would increase if the cylinder was not constrained. If value of the
lift coefficient in phase with the cylinder velocity is negative, then the motion of the cylinder
is being resisted by the fluid, there is drag, and the cylinder amplitude would decrease if
it was vibrating freely. When the lift coefficient in phase with the cylinder velocity is zero,
there is equilibrium. Roughly, the amplitude of vibration at which this occurs will be the
upper bound for the amplitude of vibration of a long marine cable made from the same
material of that being tested.

Figure 9.5 gives the lift coefficient in phase with the cylinder velocity. The values are
plotted versus the nondimensional frequency of motion of the cylinder which is defined as:

fod
= (9.5)

where f, is the freqeuncy at which the cylinder is being oscillated, d is the cylinder diameter,
and U is the flow velocity. Data are given for three different amplitude-to-diameter ratios.

What is clear is that for an amplitude-to-diameter ratio of 4/d = 0.50 the fluid is
always acting to damp the motion of the cylinder. For A/d = 0.30 and A/d = 0.15 there
is a region were the fluid is exciting the motion of the cylinder. From this we estimate
that the maximum strumming amplitude is between 0.30 and 0.50 cable diameters. Linear
interpolation gives a value of 0.38.

9.2.3 CoNTOUR PLOT OF LirT COEFFICIENT IN-PHASE WITH THE CYLINDER
VELOCITY

To get a better indication of what are the equilibrium amplitude and frequency of
vibration of the SAIC haired fairing cable, we constructed a contour plot (figure 9.6) of the
lift coefficient in phase with the cylinder velocity. The X —axis is the nondimensional fre-
quency of motion LUQ and the Y —axis is the amplitude-to-diameter ratio, A/d. The contour
lines represent lines of constant lift coefficients. The important line is the one corresponding
to Cr = 0. The equilibrium motion of the cylinder is located on this line. From stability
arguments, the equilibrium motion is located at the peak of the Cr = 0 curve. From this
we conclude that the equilibrium amplitude of vibration is A/d = 0.38 and the equilibrium
frequency of motion is %‘! = (.145.

9.2.4 UrPER BOUND OF MEAN DRAG COEFFICIENTS OF SAIC CABLE

Once we have the equilibrium values for the amplitude of vibration and the frequency
of vibration of the SAIC cable section, it is a simple matter to determine an upper bound
for the mean drag coefficient. Figure 9.7 is a plot of the mean drag coefficient as a funcition
of nondimensional frequency. For an amplitude-to diameter ratio of A/d = 0.38 and a
nondimensional frequency of %é = 0.145, we can interpolate to find that Cp = 2.05.

The actual mean drag coefficient of the SAIC cable when it is deployed in 5000 m of
water is less than the this value due to three-dimensional effects. The results of calculations
to determine the “in-situ” value are given in the next section.




Lift coefficient in phase with velocity; haired fairing
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Figure 9.5: Laboratory measurements of the lift coefficient in phase with the velocity of
motion of a section of the SAIC cable as a function of nondimensional frequency. The
different symbols correspond to the three different amplitudes of motion that were used in

the tests.
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Figure 9.6: Contour plot of the lift coefficient in phase with the velocity of motion of a
section of the SAIC cable.




Mean drag coefficient; haired fairing; Re = 10,000
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Figure 9.7: Laboratory measurements of the mean drag coefficient of a section of the SAIC
cable.

9.2.5 MEAN DRAG COEFFICIENT OF A LONG MARINE CABLE IN A SHEAR
CURRENT

For a long marine cable in a shear current, it is important to account for changes in
the vibration frequency as a function of depth and also to account for the three-dimensional
structure of the vortex shedding process. We do this with a numercal program which uses
the experimental data as input.

A vibrating cable can be viewed as a wave guide. It allows motions originating at
different locations along the cable to travel up and down the cable as transverse waves.
These waves combine with other waves and produce the overall amplitude of motion at
any given location along the cable. The amplitude of the motion is a function of the
hydrodynamic forces, the same forces which we measured in the Towing Tank.

We use the data for lift coefficient in phase with the cylinder velocity as input into
our computer model and calculate the flow-induced vibration of the SAIC cable in a shear
current. Figure 9.8 is the key to our input. It gives the all-important lift coefficient in phase
with the cylinder velocity as a function of cylinder amplitude. The drop-off in the value of
the lift coefficient at low amplitudes (% < 0.3) is due to three-dimensional effects in the
laboratory apparatus. For two-dimensional flow, the lift coefficient would follow the dashed
line and be a maximum at % = 0. The numerical program uses the dashed curve to adjust
the fluid forcing and make it either cause drag (when the local A/d > 0.38) or excitation
(when the local A/d < 0.38). The output from the computer program is the maximum
amplitude of vibration of the cable and the mean drag coefficient.

For the calculations we used the following current profile:
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Figure 9.8: The maximum lift coefficient (lift coefficient at resonance) that is in-phase with
the velocity of a section of the SAIC cable, plotted as a function of amplitude-to-diameter
ratio. This data are used as input for the numerical calculations.
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The results of the calculation are Cp = 1.9 and -‘2— = 0.4. (Note: these values were
determined by assuming that there was no structural damping in the cable. Marine cables
have a very small amount of structural damping, and this would act to reduce the Cp and

vibration amplitude slightly.)
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